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Abstract

Code review is an important aspect of modern software development but time consuming.
In 2011, Google proposed the Bugspots algorithm to help reviewers to focus on files that
are more bug prone. The algorithm ranks the files based on the number of bug-fixes they
received in the past, weighted by the age of the corresponding commit. A higher score
equals more bug-fixes in recent times and indicates that there will be more bugs in that
file.

In this thesis we propose Linespots, a modified version of the Bugspots algorithm that
ranks the individual lines of code instead of whole files. Linespots gathers information by
scoring every line involved in a bug-fix commit. Using these scores, Linespots can either
give a list of ranked lines as a result or instead project the individual line scores back to
file scores, offering the same result format as Bugspots this way.

An evaluation process was setup, comparing both kinds of Linespots’ results to the
results of Bugspots using hit density and the area under the hit density curve (AUCEC)
as metrics. Both were proposed by Rahman et al. [5] in their work that served as a
foundation for Bugspots.

The evaluation finds that the projected results are less consistent than the original
Bugspots algorithm and do not improve the hit density or AUCEC. The line-based results
have worse AUCEC values by design but could improve the hit density across all tested
projects and most parameter configurations.

The written code is maintained openly and can be inspected in the repository.1

1https://gitlab.com/sims1253/Linespots
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1. Introduction

In modern software development, code review is an integral part of the workflow but
time consuming. One common scenario involves the following question:

• Which files should be reviewed if there is not enough time to cover all files?
• Can reviewing fault prone files twice be worth ignoring more stable files, if the time

suffices to review everything?

One way to improve the ratio of bugs found per line of code reviewed is to prioritize files
that are more fault prone. There are different algorithms to guess which files contain more
bugs than others, varying in precision and cost. Rahman et al. found that simply ranking
the files by the number of bug-fixes they received in the past is almost as precise as the
more expensive BugCache algorithm [5]. Using the simple algorithm as a foundation,
Google proposed an algorithm called Bugspots, which weighs the fixes by their age, so
that older fixes are less relevant [3].

This thesis uses Bugspots as a foundation to propose a modified version, named Linespots.
The aim is to determine whether a line-based approach for the Bugspots algorithm can
yield better results than the file-based approach Bugspots uses. The quality of the results
will be measured using the hit density metric proposed by Nachiappan et al. [4] and
the cost effectiveness metric proposed by Arisholm et al. [1]. The focus lies on the hit
density as it reflects the challenge of code review the most, which is finding the most
bugs in the given lines of code.

Research Questions:

1. Can the line-based approach improve the hit density of the Bugspots algorithm?
2. How does a line-based approach effect the area under the cost effectiveness curve?

To reach the stated goal and answer the research questions, the following steps were
followed:

1. Implement a reference Bugspots algorithm with optional file change tracking.
2. Implement a modified Bugspots algorithm with the proposed changes.
3. Implement an evaluation procedure using the hit density and the cost effectiveness.
4. Use the evaluation suite to compare the implementations.

The following chapters show the design of the modifications and the results of the
evaluation.

Code samples given in this thesis follow the python syntax.

1





2. Fundamentals

This chapter explains the basic terms used in the thesis. It offers a short introduction
to the version control software Git, a description of what code reviews and audits are,
as well as a reference Bugspots algorithm, which serves as a baseline for the proposed
changes and evaluation.

2.1. Git Commits

Git1 is a version control software which stores the history of a project. A project’s
history can be described with a series of commits, which are changes made to the project.
Starting from the initial empty state, every state of a project can be reached by applying
all commits up to that moment, as long as a commit exists for that exact point in the
history.

A commit consists of a head and a body:

commit bd3798f6804acadf8847eb7eb5c371079b634797
Author: Maximilian Scholz <m0hawk@gmx.de>
Date: Sat Sep 3 19:25:05 2016 +0200

example.py: Fix divide by zero bug

diff --git a/example.py b/example.py
index f0c41e9..093b844 100644
--- a/example.py
+++ b/example.py
@@ -1,3 +1,4 @@

def mydivision(a, b)
- return a/b
+ if b != 0:
+ return a/b

The head is the first part. It holds a hash that identifies the commit, the author of the
changes, a date and a commit message, which serves as a note, tagged on to the change
to explain what was done and why.

The body starts with the first diff statement and hold a section for each file consisting of
hunks. Each hunk represents the changes applied to a continuous block of code. Each file
starts with information about file level changes, i.e., renaming or deletion. Following are
the hunks, each beginning with a line, holding positional information, then the changes

1https://git-scm.com/
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2. Fundamentals

made in the commit follow. Lines with no prefix remain unchanged. A minus indicates
a deleted line and a plus a newly inserted line. Changing parts of a line also yields a
removed and newly inserted line.

2.2. Reviews and Audits

In software engineering, reviewing and auditing code before it is released into production
are common tasks. During a review or audit, the code is inspected to find bugs and
improve readability and to increase maintainability.

Although not strictly defined, the term review commonly describes the inspection of a
proposed change to a code base. Other developers, usually team members, inspect the
proposed changes to find bugs, create easier solutions for the problem and, help the team
understanding the change. After everyone agrees that the proposed changes meet the set
standards, they are applied to the code base.

The term audit describes an additional inspection of the code base, independent of the
development process. A common use case for an audit is a so called security audit, in
which a piece of software is examined to find security problems that could be exploited
to get other users’ information for example.

2.3. Bugspots

In 2011, Rahman et al. [5] used a simple algorithm to compare their newly proposed
expensive algorithm against. They found that the simple algorithm could predict future
bugs with similar precision to their much more complex algorithm by ranking the files
based on the number of bug-fix commits they received in the past. The idea behind the
simple algorithm is that if a higher number of bugs occurred in a file, this file must be
complex. Thus, the probability rises that more bugs are present or introduced frequently
to this file.

Later that year Google, used this idea as a basis for Bugspots [3]. Instead of ranking files
based on the amount of fixes they received, Google proposed weighting the fixes based
on the time they occurred. If a fix becomes older, it has less influence on the score. The
weighting helped to move files that once where bug prone, but got fixed out of the top of
the ranking.

Google declares the top 10% of ranked files as hot-spots. During reviews and audits the
developers can use this information to spend more time on them.

4



2.3. Bugspots

2.3.1. Algorithm

The algorithm looks through a list of commits and for every commit it checks if it is a
bug-fix or not, which is not easy and an own research problem. If so, it then proceeds to
increase the involved files’ scores depending on the commit’s age. Finally it returns a list
of all files ranked based on the score they received:

for commit in commits_to_crawl:
if commit_is_fix(commit):

for file in commit.diff:
file.score +=

1 / (1 + math.exp(
(-12 * normalized_timestamp(commit)) + 12))

2.3.2. Finding Fix Commits

Google determines if a commit fixed a bug by checking the commit message for an
attached bug and then using their bug-tracking database to decide if it was a bug or a
feature request. Existing open source implementations of the Bugspots algorithm use a
regular expression (regex) on the commit messages to find indicators for bug-fixes, which
is what the algorithm proposed in this thesis also uses.

The regex fix(ing|e[s|d])?|bug can find the words fix, fixing, fixes, fixed and bug. Us-
ing it on Bug 771131 - Replying in plain text ignores quotation level to iden-
tify the fix commits would recognize Bug and identify the commit message as a bug-fix.

To ensure the best precision in finding bugs, the regex has to be chosen cautiously to fit
the project-specific commit message guidelines.

2.3.3. Weighted Scoring

The reasoning behind the weighting of commits is that without it, a buggy file that gets
fixed still retains a high score. To account for fixed files, older bug-fixes weigh less than
newer ones. Google proposed the following function as a way to weigh commits by age.

Score =
n∑

i=0

1
1 + e−12ti+12

“Where n is the number of bug-fixing commits, and ti is the timestamp of the bug-fixing
commit represented by i. The timestamp used in the equation is normalized from 0 to
1, where 0 is the earliest point in the code base, and 1 is now (where now is when the
algorithm was run). Note that the score changes over time with this algorithm due to

5



2. Fundamentals

the moving normalization; it’s not meant to provide some objective score, only provide a
means of comparison between one file and another at any one point in time.”[3]

In figure 2.1 the function is displayed for the normalized time between 0 (oldest commit)
and 1 (newest commit). It shows how only the newest commits have a high weight and
older commits become less important fast.

0.0 0.2 0.4 0.6 0.8 1.0
Time (normalized)

0.0

0.1

0.2

0.3

0.4

0.5

S
co

re

1 / (1 + exp((-12 * x) + 12))

Figure 2.1.: Bugspots Weighting Function
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3. Design

This chapter holds information about the design of the newly proposed Linespots algo-
rithm. It describes the thought process and principles behind the single parts.

3.1. The Linespots Algorithm

The Bugspots algorithm by Google uses a single score per file. This should intuitively add
a lot over overhead lines for every proposed file as the whole file has to be inspected even
if just one line is fault prone. To reduce the number of inspected lines with low scores
we propose to use one score per line of code instead. This should enable the algorithm
to only propose the fault prone lines, leaving out the stable ones and thus increasing
the number of bugs per proposed line. As result Linespots can either present a list of
files as described in section 3.6 or a list of lines as described in section 3.7. An example
of how the line-based result is displayed to the user is shown in figure 3.1. The overall
structure of Linespots is the same as Bugspots, with the differences being in the ranking
and tracking of files and lines.

for commit in commits_to_crawl:
if commit_is_fix(commit):

for file_diff in commit.diff:
file.track(file_diff)
for hunk in file_diff:

file.lines.track(hunk)
file.lines.update_score(hunk, commit.date)

else:
for file_diff in commit.diff:

file.track(file_diff)
for hunk in file_diff:

file.lines.track(hunk)

In the following sections, the separate components of the Linespots algorithm are described
in more detail.

3.2. Recognizing Bug-Fix Commit

Rahman et al. use three different approaches to identifying bug-fixing commits. First,
they search the commit message for keywords like ‘fix’ and ‘bug’ and second, they use
a bug tracking database to find bugs that were fixed and commits that correspond to
the fix. Last, they did a manual review of commits to remove false positives and find
commits the previous methods missed.

7



3. Design

Figure 3.1.: Line-Based Result for the coala Repository

This thesis only uses the approach of parsing the commit message with a regex. For each
project an own regex is chosen and used to find project specific keywords in the commit
messages. If the regex finds one of the given keywords, the commit is flagged as a fix
commit.

Even though the use of bug tracker information and manual review of commits improves
the precision of identifying the commits, those processes are not used in this thesis due
to time constrains.

3.3. Tracking File Movement

The Google engineers did not address any implementation details so it is uncertain if they
track file changes or not. The more popular implementations of the Bugspots algorithm
do lack this feature though.12

Linespots uses file tracking as it preserves information for files that move or change their
name. Without file tracking the information gathered before the change is lost. File level

1https://github.com/igrigorik/bugspots
2https://github.com/niedbalski/python-bugspots
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3.4. Tracking Line Movement

changes can be gathered from the diff body. Every file section in a commit starts with
information about the file level changes. If the commit added, renamed or deleted a file,
the diff holds the old and new paths of this file. Linespots uses this information to move
the line scores with a renamed file, delete them for a deleted file or initialize a new list
for an added file.

3.4. Tracking Line Movement

As Git diffs only display line level changes as either unchanged, removed and added lines,
all scores of changed lines could be lost with no proper line tracking.

For unchanged and deleted files the tracking is simple. If a line remains unchanged,
Linespots does not change the score as well. For deleted lines, Linespots also deletes the
scores. But for added lines it is hard to determine if a line is a modification of an old line
or a newly added line. We make the assumption that every line that is part of a bug-fix
commit was part of the bug inducing code and thus every line added with a bug-fix
commit is treated as a modification. Every modified line needs to have a corresponding
line-score from before the commit to serve as the basis before updating the scores in
the next step. Identifying the lines from before the change is hard and an own research
problem. Canfora et al. [2] found that similar location and immediate proximity are
good indications for the identification of changed lines and their origin. As Git offers
changes in hunks that hold the changed lines and minimal context overhead, we treat all
lines in a hunk as being a common origin line for all lines added to that hunk with the
commit. Lines added in a hunk use the average line-score of that hunk as a basis for the
score update.

Suppose a hunk h has n lines before a commit. For all lines l with line-score S(l) in a
hunk, let la be the number of added lines, lr be the number of removed lines, lu be the
number of unchanged lines, and

∑
S(l) be the sum of all line-scores for the lines l:

n = lu + lr

• If the line is untouched, the line-score S(l) is updated

• If the line is deleted, the line-score S(l) is deleted

• If the lines is added, first the line-score is determined by the average hunk line-score
before the commit and then the line-score is updated:

S(l) = Saverage(h) = 1
n

·
(∑

S(lu) +
∑

S(lr)
)

If there are no previous scores for the hunk because it is the first time the algorithm
encounters this file, the line-score S(l) is set to 0.

9



3. Design

3.5. Updating Scores

After tracking the lines in a hunk, Linespots updates the remaining line-scores the same
way Bugspots does, as described in section 2.3.3. Linespots also uses the same weighting
function as Bugspots because, although using a different function or weighting process
could yield better results, investigating the influence of the weighting function is not the
focus of this thesis.

Calculating the normalized age of a commit uses the UNIX timestamps of the commits.
Let T (c0) be the timestamp of the oldest commit to inspect, T (cm) be the timestamp of
the most recent commit to inspect, then

Tn(ci) = T (ci) − T (c0)
T (cm) − T (c0)

is the normalized timestamp of commit ci between c0 and cm. This lets the normalized
timestamp be 0 for c0 and 1 for cm.

We calculate the score of a line l after a commit ci, S(ci, l), by adding the result of the
weighting function at the normalized age of the commit, to the base score that is the
result of the line tracking, S(ci − 1, l).

S(ci, l) = Sl(ci − 1, l) + 1
1 + e−12Tn(ci)+12

For commits that don’t fix bugs the update is not done.

3.6. File Level Results

The Bugspots algorithm from Google has one score per file. To be able to evaluate
against it under similar conditions, the line scores of each file have to be combined to a
file score.

We propose two algorithms for the projection of line-scores to a file score. One uses the
average line-score for a file, the other uses the average line-score of the highest scored
10% lines per file. The next two sub sections hold details about the two algorithms.

3.6.1. Average Line-Score

The average line-score is a file score where we compute the average score over all lines in
a file. Formally, let f be a file with n lines of code li, then:

S(f) = 1
n

·
n∑

i=1
S(li)

10



3.7. Line Level Results

The average line-score is a simple and thus easy to use approach but it may not yield
a useful metric if large files that have a lot of untouched code and a small portion of
highly bug prone code are part of bug-fixes. Those files could have a low score even if a
significant amount of bug-fixes was applied to them.

3.6.2. Top Ten Percent Score

The top ten percent score is a file score where we compute the average score over the
highest 10% line-scores in a file. Formally, let f be a file with n lines of code li sorted by
their score S(li) in descending order, then:

S(l1) ≥ S(l2) ≥ S(l3) ≥ . . . ≥ S(ln)

S(f) = 1
n

·
b n

10 c∑
i=1

S(li)

To cover the weakness of the average line-score, the top ten percent score sorts the lines
in each file based on their score, takes the highest scored ten percent lines, and calculates
the average score of them. This way the focus lies on the more bug prone parts of files.
The downside to this algorithm is that it does ignore the size of the file and could lead to
big files being at the top of the ranking, even if there are smaller files with better bugs
per line of code ratio.

3.7. Line Level Results

The second goal for this thesis is to use the line-based information gathered to further
improve the review process. We propose simply ranking all lines by their score and to set
a threshold score to mark all lines above the threshold as bug prone.

3.8. Summary of Changes

We proposed the following changes to the original Bugspots algorithm:

• File tracking: This topic is not addressed in the Google engineers’ blog post. We
assume, that Google uses something similar to the proposed tracking capabilities
but some more popular implementations of the Bugspots algorithm lack this feature.

• Line tracking and scoring: The biggest point of interest for this thesis is to see the
advantages of using one score per line instead of one score per file. Using line-scores
requires tracking and scoring of individual lines. Linespots either can output the

11



3. Design

sorted line-scores directly or project them to file-scores, similar to the output of
Bugspots.

3.9. Implementation

Every part of the algorithm described in the current chapter is implemented in its own
function, which improves maintainability and the ability to test and evaluate the single
parts.

One limitation of the implementation is that it does not parse diffs of merge commits.
As every merge consists of multiple diffs and every merge commit has multiple parent
commits, parsing them is complicated and was not implemented due to time constrains.

The implementation is written in python 3 and focuses on the precision of results as
well as usability and maintainability. Some time was spent optimising the runtime and
memory usage to make evaluation with larger sets of parameters possible.

12



4. Evaluation

This chapter describes the evaluation process used to analyse the changes proposed in
earlier chapters and displays the results.

For the evaluation, three open source projects were analysed using different versions of
the algorithms:

1. The Bugspots algorithm proposed by Google without file tracking
2. A modified version of 1. that includes file tracking
3. The newly proposed Linespots algorithm using file-based results
4. The newly proposed Linespots algorithm using line-based results

4.1. Metrics

We used three metrics for the evaluation: Hit density, area under the cost effectiveness
curve and area under the cost effectiveness curve at 20 % lines of code.

4.1.1. Area Under the Cost Effectiveness Curve

Rahman et al. [5] use the cost effectiveness curve (CEC), which can be obtained by
plotting the proportion of identified bugs (a number between 0 and 1) against the
proportion of the lines of code (also between 0 and 1) inspected.

Suppose bugs are randomly distributed in the code. An algorithm randomly inspecting
files should find one percent of bugs per one percent of lines. A useful algorithm thus
should have a CEC that stays above the f(x) = y graph.

Figure 4.1 shows a zoomed in CEC in blue and a hit density curve in dashed red. It
demonstrates how hit density and the CEC are related, as the hit density peaks when
the CEC has the biggest lead relative to the y = x line.

By using the area under the curve as a metric, an algorithm can be compared to another
algorithm broadly, as a bigger area comes from a faster rising graph and thus has a higher
hit density in general.

Because it is not realistic to review most of a project, Rahman et al. proposed the area
from 0% to 20% lines of code as a metric. The area under the CEC from 0% loc to
20% loc is referred to as AUCEC20. The AUCEC20 represents the performance of an
algorithm inspecting up to 20% lines of code.

Google uses the 10% highest rated files as hot spots, which follows the finding of Rahman
et al. that 10% of top ranked files account for roughly 20% of the code.

13



4. Evaluation
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Figure 4.1.: Cost Effectiveness and Hit Density Curve

4.1.2. Hit Density

The hit density is similar to the defect density proposed by Nachiappan et al. [4] but
instead of using the sum of all defective elements, this thesis only uses the sum of bugs
correctly predicted, hit. Rahman et al. [5] use this idea called closed bug density. It
reflects the proportion of closed bugs per proportion of proposed lines of code:

Hit Density = % of bugs
% of lines of code

We use the maximum of the hit density is an indicator of the peak performance of the
algorithms and also inspect the proportion of loc at which the maximum hit density
occurs.

We use hit density as a metric to compare different algorithms as it describes the
effectiveness of the inspection of the proposed lines of code. This is interesting because
the maximum hit density occurs early with few proposed loc and thus is useful for code
review where only few loc, compared to the whole project, are looked at.
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4.2. Process

4.1.3. Recall and Precision

Two metrics often used in software analysis are recall and precision, defined by:

Recall = True Positive
Defective

Precision = True Positive
Marked as Defective

Recall represents how many of the truly defective elements were found. Precision
represents how many of the elements marked as faulty were really defective.

We don’t use Recall and Precision as it is unknown whether something is a true positive
and what the overall amount of defective elements is.

4.2. Process

To decide if the proposed changes help to reach the goals set at the start of the thesis,
we investigate the algorithms with the two main focuses being:

• Determine if a line-based approach of the Bugspots algorithm can yield better
results than the file-based approach Bugspots uses.

• Determine if the additional information the line-based approach offers can further
improve the review process.

Because the evaluation process is deterministic, all data can be reproduced with revision
d798da599f292191ad16fc144730330045075154 of the project.12

4.2.1. Creating a Pseudo Future

One way to evaluate the algorithms would be to let them make a prediction and either
make a full code audit or wait for future commits to check if the prediction was right.

To simulate this kind of evaluation, the commit history of a repository is used to create
a pseudo future. Instead of starting at the newest commit and letting it look into the
past, we chose a commit in the past as the start point. From that start commit we run
the algorithms and check the results against the commits that are younger than the start
commit. Figure 4.2 shows a diagram visualizing the idea.

1https://gitlab.com/sims1253/Linespots
2Even though the design of the evaluation process is deterministic, values do differ between runs. As
this only effects the less significant decimal places and the same trends can be observed over different
runs. Due to time constrains this was not fixed before the deadline. For information about this issue
go here: https://gitlab.com/sims1253/Linespots/issues/40

15



4. Evaluation

Using the same regex to identify bug-fix commits, we collect the bug-fixes in the pseudo
future by running the absolute bug count algorithm by Rahman et al. [5]

HEAD INIT

Now

HEAD~start

Future Past

Figure 4.2.: Creating a Pseudo Future

4.2.2. Determining Hit Density and AUCEC

We use the result of the algorithms to build a set of proposed files. The set starts empty
and files are added one after another, sorted by their scores in descending order. For
each file put into the set, we add the number of fixes it received in the pseudo future to
the number of fixes hit by the files in the set.

From the set of files and corresponding number of fixes received in the pseudo future, we
calculate the relation between lines of code inspected and fixes found defined by:

Hit Density =
Bugs Hit by the Proposed Set

Bugs Fixed in the Pseudo Future
LoC in the Proposed Files Set

LoC in the Project

We use the file set and fix counts to plot the CEC in the 2D plane. For every added file
the proportion of loc of the project is the x coordinate. The proportion of future bugs
hit is the y coordinate. Using the points, the area under the curve can be approximated
and setting a threshold for x, we obtain the area at 20% lines of code covered.

For the line-based result we assign every bug-fixing commit a score that equals the highest
line-score corresponding to a line that was part of the fix. We then build a set of proposed
lines by going over the fixes sorted based on their assigned score in descending order. For
each fix we count the number of lines with a higher or equal score. This is the number of
lines that would have to be inspected to detect the bug. From these number we calculate
the hit density and AUCEC the same way as for the file-based results.

For each run, the start, the depth, the AUCEC, the AUCEC20, the maximum hit
density, and the x coordinate for maximum hit density are recorded to allow comparison
afterwards.
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4.3. Test Repositories

4.2.3. Choosing a Regular Expression

We only use the information from the commit message to determine if a commit is a
bug-fix or not. Because we don’t use further information, the ability to find bugs relies on
the accuracy of the regex, i.e., how well it is able to separate commits including bug-fixes
from commits without.

We use commit message guidelines and manual commit message review to determine a
fitting regex for each project. The regular expressions used for evaluation and a reasoning
for them can be found in section 5 for the respective repositories.

4.3. Test Repositories

Rahman et al. used five open source projects for their evaluation [5]. We use those
projects as a basis for our evaluation data and in addition, we also considered the coala
project. We chose the evaluation projects to offer diverse scenarios mostly based on the
values shown in table 4.1.

Evolution3 is the default e-mail client for the Gnome desktop and it uses a well documented
and modern workflow and has clear commit message guidelines. The table shows, that
Evolution has the highest amount of loc as well as a medium file count, high number of
commits and a long development history.

Httpd4 is a web server developed by the Apache Software Foundation. It uses a more
conservative workflow that relies mostly on the issue tracker for information, which makes
it harder to retrieve information from the commit messages. The table shows, that Httpd
has less loc than Evolution but still a lot. The number of files is medium too, the number
of commits as well. Httpd is the oldest project we considered.

Nautilus5 was not chosen due to the similarities to Httpd. The big difference of the two
projects is the number of files. The similarities and time constrains led us to the decision
to not use Nautilus for our evaluation.

GIMP6 and Lucene-Solr7 use merges in their workflows which are not handled by
Linespots, thus we do not use them for evaluation.

Coala8 is a framework for static code analysis. It is a young project that made changes to
its workflow over time. It uses a workflow based on Gnome’s but stricter in the way, how
commits are labelled as bug-fixes or features. The clear labelling of commits as bug-fixes
or non bug-fixes was introduced in mid 2016.

3https://github.com/GNOME/evolution
4https://github.com/apache/httpd
5https://github.com/GNOME/nautilus
6https://github.com/GNOME/gimp
7https://github.com/apache/lucene-solr
8https://github.com/coala/coala
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4. Evaluation

The table shows, that coala is the smallest and youngest project in every aspect.

Both evolution and httpd are widely used, while coala’s user base is small in comparison.

Using additional projects for the evaluation was considered but not done, due to time
constrains for this thesis.

Name Lines of Code Files Commits First Commit
Evolution 3,320,062 2,480 42,527 1998.01.12
Httpd 947,606 3,609 29,121 1996.07.03

Nautilus 963,567 529 19,577 1997.01.02
GIMP 57,422 8,266 37,434 1997.01.01

Lucene-Solr 182,999 9,593 25,886 2001.09.11
coala 27,252 314 3,261 2014.07.18

Table 4.1.: Summary of Test Repositories

4.4. Choosing the Best Parameters

The two parameters that can be changed for the implemented algorithms are the number
of commits to look at and the regular expression to identify bug-fixes.

As shown in the scatter plots 4.3(a), 4.3(b) and 4.3(c), a higher search depth almost
always improves the AUCEC. Using the scatter plots as a foundation, we recommend a
depth of at least 300 commits. This is based on the generally low AUCEC values before
the 200-300 commit depth mark.

For the regular expression, the project documentation can give information about commit
message conventions but verifying the commit messages manually should be done to
ensure best results. A simple recommendation would be (fix(ing|e[s|d])?)|bug. It
catches fix, fixing, fixes, fixed, bug. These words tend to be used most often as
bug-fix identifiers.

As we only wanted to evaluate the algorithms in areas where they perform well in general,
we used the scatter plots of the AUCEC shown in figure 4.3 to determine the pseudo
future sizes and depth range. We chose pseudo futures up to 175 commits, as the scatter
plots show a general loss of result quality between 150 and 200 commits upwards. For
depths, we chose values between 150 and 1500. The scatter plots show that a depth of at
least 300 commits is needed to ensure good results and a depth of 1500 commits still can
be calculated with reasonable time and memory resources.

For each project we show one scatter plot exemplary, the remaining ones can be found in
chapter C.
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4.4. Choosing the Best Parameters
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Figure 4.3.: AUCEC Scatter Plots for the Bugspots Implementation with File Tracking
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5. Evaluation Results

For each tested project we present the median values for AUCEC, AUCEC20, maximum
hit density and loc for maximum hit density. The tables also include the respective
standard deviations. For the maximum hit density we also show additional box plots
that ignore outliers to improve readability.

5.0.1. Gnome/evolution:

We chose the regex, Bug [1-9][0-9]* based on the gnome commit guidelines and a
manual review of commit messages, suggesting, that although there seem to be bug-fixes
without attached bug labels and bug labels attached to fixes that would not qualify as a
bug-fix, it is the most promising regex.

Table 5.1 shows that all file-based results have similar AUCEC and AUCEC20 values and
are consistent. The line-based values are lower and also less consistent.

Name AUCEC Mean AUCEC Dev. AUCEC20 Mean AUCEC20 Dev.
Bugspots 0.848134 0.058794 0.133341 0.009466

Bugspots with tracking 0.848144 0.058800 0.133297 0.009458
Average 0.860171 0.056994 0.138965 0.010949

Top ten percent 0.859782 0.058500 0.138111 0.012117
Line Ranking 0.462762 0.135338 0.086136 0.025323

Table 5.1.: AUCEC for Evolution

Table 5.2 shows that Linespots improves maximum hit density both with file-based results
and with line-based results but the standard deviation is higher than for the Bugspots
implementations. The loc for the maximum hit density are similar for all implementations
besides the average line-score projection which is more than 1.5 times as high as the rest.
Figure 5.1 shows that the hit density is usually higher for the line-based results than for
the file-based results. The top ten percent projection is the best file-based solution.

Name Max. HD Mean Max. HD Dev. Max. HD Index Mean Max. HD Index Dev.
Bugspots 35.654 12.520 0.0080079910431794 0.0048496782430677

Bugspots with tracking 35.654 12.520 0.0080079910431794 0.0048496782430677
Average 45.229 72.736 0.0133191119281376 0.0071071095195690

Top ten percent 101.036 148.556 0.0069108714434092 0.0082834923878903
Line Ranking 1959.500 3073.980 0.0088131981416319 0.0085804463304783

Table 5.2.: Maximum Hit Density for Evolution

5.0.2. Apache/httpd:

We chose the regex fix based on a manual review of commit messages because the
commit message guidelines do not give clear instructions on how to identify bug-fixes.
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5. Evaluation Results
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Figure 5.1.: Evolution: Box Plots for the Maximum Hit Density

Almost every commit has a link to an issue in a bug tracker but without using a lookup
via the tracker’s api, the only identifier for bug-fixes available in commit messages was
the word fix.

Table 5.3 shows similar AUCEC and AUCEC20 values for all file-based results. Again
the line-based result has worse AUCEC and AUCEC20 than the file-based results but
the gap in consistency is smaller than for Evolution.

Name AUCEC Mean AUCEC Dev. AUCEC20 Mean AUCEC20 Dev.
Bugspots 0.784571 0.110193 0.094818 0.024540

Bugspots with tracking 0.784521 0.110005 0.094764 0.024500
Average 0.772814 0.106025 0.092620 0.022623

Top ten percent 0.776976 0.113739 0.099360 0.026808
Line Ranking 0.193964 0.168412 0.038635 0.033627

Table 5.3.: AUCEC for Httpd

Table 5.4 shows that the average line-score projection has the highest mean maximum hit
density but also a high standard deviation. The top ten percent projection has the worst
maximum hit density while the line-based result is second only to the average projection.
The line-based result has the lowest loc for maximum hit density. Figure 5.2 shows that
the top ten percent projection has the lowest maximum hit density in general. Without
the outliers the average projection looks similar to the Bugspots implementations and
the line-based result has the highest maximum hit density.

5.0.3. coala:

We chose the regex Fixes https: based on the commit guidelines and a manual review
of commit messages. The strict rule of using the Fixes keyword combined with a link to
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Name Max. HD Mean Max. HD Dev. Max. HD Index Mean Max. HD Index Dev.
Bugspots 124.510 99.600 0.0041537353121725 0.0119488852162963

Bugspots with tracking 124.510 99.600 0.0041537353121725 0.0119488852162963
Average 4632.470 11091.675 0.0018729770731374 0.0024959862626980

Top ten percent 77.653 82.048 0.0092016154153657 0.0162686836814913
Line Ranking 307.531 212.493 0.0003983291328505 0.0002665438732935

Table 5.4.: Maximum Hit Density for Httpd
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Figure 5.2.: Httpd: Box Plots for the Maximum Hit Density

an issue on Github wasn’t introduced until earlier this year which leads to worse results
for higher depths as can be seen in figure 4.3(c). In general this repository does not work
well with either Bugspots nor Linespots.

Table 5.5 shows similar AUCEC values for the file-based results and lower values for the
line-based result. The mean AUCEC20 is highest for the line-based result and worst for
the projected Linespots results.

Name AUCEC Mean AUCEC Dev. AUCEC20 Mean AUCEC20 Dev.
Bugspots 0.482468 0.070940 0.027325 0.009118

Bugspots with tracking 0.486324 0.070041 0.027401 0.009019
Average 0.469454 0.065403 0.020175 0.007529

Top ten percent 0.475325 0.069582 0.025270 0.008440
Line Ranking 0.280775 0.146721 0.044863 0.022333

Table 5.5.: AUCEC for coala

Table 5.6 shows that the line-based result has the best maximum hit density and lowest
loc at maximum hit density. The Bugspots implementations are the most consistent ones.
The projected results are less consistent than the Bugspots results overall. Figure 5.2
confirms that the line-based result has the highest maximum hit density and the top ten
percent projection has a better median than the other file-based results.
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5. Evaluation Results

Name Max. HD Mean Max. HD Dev. Max. HD Index Mean Max. HD Index Dev.
Bugspots 2.798 0.967 0.0480461556354995 0.0915444751121636

Bugspots with tracking 2.798 0.967 0.0480601049342504 0.0916091067412921
Average 2.374 2.691 0.1105846311615345 0.1763613845545503

Top ten percent 3.145 3.667 0.0619731737428163 0.1018196120878422
Line Ranking 13.211 5.393 0.0137126906718898 0.0107461301686817

Table 5.6.: Maximum Hit Density for
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Figure 5.3.: coala: Box Plots for the Maximum Hit Density
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6. Discussion

This chapter holds the discussion of evaluation results. It offers interpretations for the
shown data and draws a conclusion based on the trends that show in it.

6.1. Project Differences

We chose the three projects to cover a broad spectrum of project types. Here we will
offer a comparison of how the algorithms performed on the projects and hypothesis for
why they do so.

The first observation is that Evolution and Httpd show much better results overall than
the coala repository with Evolution having the best AUCEC and AUCEC20 values. For
both projects, all four file-based results show much better AUCEC and AUCEC20 values
than the line-based version. The hit density on the other hand is best for the line-based
version. For coala, the file-based results are much worse than for the other two projects.
The line-based result still has lower AUCEC than the file-based ones but the gap is
smaller and the AUCEC20 values are better for the line-based result. Most noteworthy is
the very good maximum hit density the line-based result offers compared to the file-based
ones.

One hypothesis for the different behaviours could be the differences in commit message
guidelines used in the projects. While coala’s current workflow includes identifying
commits as bug-fixes explicitly in the commit message, this rule was introduced around
500 commits ago, so going further into the past will not help as much as one would
expect. The changed workflow shows in the sub par scaling coala has with the higher
depth. For Evolution and Httpd, the workflows are more stable and did not change
recently but identification of bug-fix commits is not done clearly. This uncertainty could
lead to a smaller fraction of bug-fix commits that are correctly identified and to a higher
portion of non fix commits that are falsely identified as fixes. As the evaluation uses the
same process, problems with misidentification should not show in the evaluation data.

Another hypothesis is the different amount of file level changes that could interfere
with algorithm performance. Large amounts of added and deleted files could make past
information less useful, as gathered information is lost for deleted files and new files have
less time to face fixes. Table 6.1 shows, that the number of file level changes indeed
is much higher for coala, than for Evolution and Httpd, which supports the idea that
for coala bugs might happen in files that are added in the future and thus can not be
proposed for inspection in the present.
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6. Discussion

Name Depth Added Files Deleted Files Renamed or Moved Files

Evolution 500 57 140 1
1500 102 126 9

Httpd 500 18 0 0
1500 68 20 2

coala 500 65 62 6
1500 309 409 294

Table 6.1.: File Changes

6.2. File Tracking

Both the Bugspots implementation, with and without file tracking, performed well in
most scenarios. Comparing the results of both, file tracking has minimal influence on the
metrics.

The reasoning for why file tracking should improve results is the preservation of infor-
mation. If file level changes are not tracked, they will result in loss of all information
about that file from before the change. Moving the information with the file should
in theory yield better results, since more information is available. If a file that is bug
prone is renamed or moved and the score is not moved with it, the ranking for that file
would change but within our experiments, we did not observe a lot of file deletions or
movements that led to changing scores.

Table 6.1 shows file level changes for the projects for the last 500 and 1500 commits.
It shows that coala has by far the highest number of moved files, which supports the
observation that coala shows the biggest difference between the two versions, although
the difference is still minimal. As more file level changes happen, the possibility for a
relevant information loss rises so that preserving that information yields better results.
But even though a lot of file-level changes happened for coala in the last 1500 commits,
the influence on the metrics is minimal. The small impact could be because the changes
happen in the older part of the commits that, due to the weighting function, has less
influence anyway. Also, to effect the ranking of files a change would have to hit a file
with a high score to have a big influence.

In conclusion, even though the impact of file tracking is minimal, we suggest to use it,
since projects with more file level changes might profit from it and those with less do not
experience drawbacks.

6.3. Linespots File Scores

The Linespots algorithm is able to gather information with a higher resolution than the
Bugspots algorithm. This thesis proposed a way to project these high resolution line
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6.4. Linespots Line Scores

scores back on to file scores and compare the result with the reference implementations.

In this section we discuss the two projected result variants and compare them against
each other and the Bugspots implementations.

6.3.1. Comparison of Average and Top Ten

Both versions are less consistent than the reference implementations. Only the maximum
hit density shows real differences for Linespots’ file-based results but it is the least
consistent value for both, with it being high for one projection but low for the other.

In conclusion, there is no clear favourite between the average and top ten projection but
a trend becomes apparent, favouring the top ten projection.

6.3.2. Comparison of Projected Scores and Reference Implementations

Comparing the Bugspots reference implementations to the average and top ten results
gives a clear favourite roll to the reference implementations. They are more consistent
and yield better results most of the time. The only metric, in which the average and
top ten results can outperform the reference implementations regularly, is maximum hit
density. But due to the inconsistency of the projected results, neither of the two can
exceed the Bugspots implementations sufficiently to be able to propose it for that metric.
Overall, the values are often similar but in general, the reference implementations give
better results.

6.4. Linespots Line Scores

In this section we discuss the line-based results of the Linespots algorithm.

6.4.1. Behaviour

From all projects tested, the line-based version has lower AUCEC and AUCEC20 values
than the other implementations. Only for the coala project, it can achieve higher
AUCEC20 values than the other implementations.

In all projects, and especially the coala project, in which the other algorithms performed
poorly, the line-based version has the best maximum hit density values. There are some
occasions, like the extreme high outliers for the average projection with the Httpd project,
where another algorithm tops the line-based value but it never has bad hit density values.
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6. Discussion

6.4.2. Comparison of Line Based Results and File-Based Results

Looking at the data, the first thing to note are the low values for AUCEC and AUCEC20
for the line-based results. Two hypothesis for the low values are the smaller amount of
scored code after running the algorithm and the inability to find bugs in new code.

Contrary to the file-based results, the line-based variant holds a far smaller part of the
project’s code in its scored-code set. Instead of adding each file that has been part of
a bug-fix, only the corresponding lines are added. The line-based results miss future
bug-fixes that happen in files that received fixes before but on lines that did not receive
fixes. The file-based results hit those bugs. This difference in bug hitting ability leads to
smaller AUCEC values for the line-based results as they hit less future bugs.

Another reason for this behaviour could be the inability to predict bugs in lines that
are written in the pseudo future. While the file-based approach proposes whole files for
inspection, the line-based approach only proposes lines. Bugs that are fixed in code that
was introduced in the future, can occur in files from the past but never in lines from the
past. Thus, the line-based-results are not able to find bugs in lines of code that did not
exist in the past. The difference stems from the design of the evaluation method and is
not existent due to the algorithm. An evaluation could be designed so that it ignores
code introduced in the future for file-based results too.

Due to these design limitations, the line-based version is expected to achieve lower
AUCEC and AUCEC20 values as it can not hit the same absolute amount of bugs as the
file-based versions with a much smaller set of code.

As stated before, the maximum hit density for the line-based version is the highest in
most cases. This advantage probably is due to the design decision, to not hold whole
files but only lines of code instead. The same reason that might lead to smaller AUCEC
values probably also results in higher hit density values. Where the file-based approach
proposes every file that was part of a bug-fix, the line-based version only proposes lines
that were part of a fix and are still in the code base when the algorithm is run.

When a bug prone line is deleted from a file, the file-based scores do not change while
the line-based version drops that line and thus will not propose it for inspection. This
preservation of old information could result in files being proposed that had bugs fixed in
them, but in which the bug prone lines were removed later. Another potential reason
for the higher hit density values for the line-based version could be that it proposes less
overhead lines per bug. Because the line-based version only adds the lines that are part
of a bug-fix to the proposal set instead of the whole file, fewer lines with low scores are
proposed upfront and either are proposed later or not at all.

The reason why the hit density is not a lot higher all the time might be, that in the
projects chosen, one file often contains a lot of the future bugs. If the file-based results
propose this file first, they could achieve a high hit density where if they miss it, the hit
density is low. The line-based version can achieve a high hit density more consistently as
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6.5. Summary

it has the information it holds in more detail than the file-based approaches.

6.5. Summary

The results of the evaluation leads to the conclusion that all tested algorithms work
best with older more stable repositories that introduce fewer file level changes. Taking
a look at individual performance, the Bugspots algorithm is the most consistent over
repositories and parameters, having the best AUCEC and AUCEC20 values. File tracking
does improve the results in theory but we could only observe minimal effects.

The file-based results of the Linespots algorithm are less consistent than the Bugspots
results and even though they showed promising improvements for the maximum hit
density, overall the inconsistency makes them unreliable and they should not be used
instead of the reference algorithm.

The line-based results of the Linespots algorithm show lower AUCEC and AUCEC20
values than the file-based results, as was expected, but could improve the hit density in
most cases.

With the

How does a line-based approach effect the area under the hit density curve?

The evaluation showed that the AUCEC and AUCEC20 both suffer from the usage of
line scores instead of file scores. The lower values probably are due to more precise
information gathering, which leads to a smaller set of ranked code so the amount of bugs
that can be correctly predicted is smaller. Another factor might be that the evaluation
enables the file-based versions to predict bugs in code that was introduced in the future
which again increases the amount of bugs the file-based results can predict compared to
the line-based results.

With these conclusions, we answer the research questions:

Can the line-based approach improve the hit density of the Bugspots algo-
rithm?

The evaluation found that using file-based results of the line-based approach did not show
improved hit density compared to the Bugspots implementations consistently. Using the
line-based results instead, does show a trend of improved hit density in most cases, even
for projects that do not work well with file-based results.
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7. Recommendations

This chapter holds recomendations for future work on this topic.

7.1. Algorithmic Improvements

There still are a lot of possible modifications that could improve the result quality of the
algorithm. The proposed changes are non exhaustive:

As stated earlier, the precision with which a bug-fix commit can be correctly identified is
very important as it gives the data base for the algorithm. Missing bug-fix commits or
identifying non fix commits wrongly leads to missed or false information in the data set
used for the ranking. This probably leads to a sub par precision for the prediction of
future bugs. To improve the precision, additional information can be used to identify the
commits. Rahman et al. [5] propose the use of bug tracking databases as a source for
additional information. If a commit has a link to a bug tracker entry attached, it can be
possible to obtain information about the nature of the issue that was worked on with the
commit. Additionally, extensive manual classification can be done to ensure maximum
precision of the input data for the algorithms.

Another way of improving identification of commits could be to train neural networks
with pre classified commits and use them as additional information in the identification
process.

In addition to the improved precision of the identification, another improvement could
be gained by using a more detailed set of data than just the closed bugs. The total
number of bugs consists of the closed bugs, the reported but unfixed open bugs, and
the unreported bugs. As it is not possible to get information about unreported bugs
without reviewing the code, these bugs can not be used by any prediction algorithm. The
open bugs however can be used as long as they have files associated with them. This
information again can be obtained by searching a bug tracking database.

7.2. Future Work

Due to the time constrains set by the format of this thesis, the evaluation process was far
less in-depth and exacting as needed for a clear definite answer of the research question.
For future research work on this topic we propose multiple changes and additions to the
evaluation process.

To broaden the scope of the evaluation a higher number of projects should be tested
and compared during the evaluation process. The small sample size used in this thesis is
prone to individual cases of extreme behaviour as could be observed with the hit density
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7. Recommendations

values for Httpd. A larger dataset would give more capability to compare and even out
such spikes in the results.

Together with the bigger dataset a number of statistical methods could be used to find
trends in large numbers of results. This would provide additional arguments to support
or refute trends observed in case studies like the one performed in this thesis. In addition,
this could give a better foundation for good default parameters and factors that help
projects to work well with the algorithm.

To improve the comparability of the line-based and file-based results the way of identifying
if a future bug was fixed in a proposed file should be changed to only include the same
set of fixes as the file-based version. This can be done by tracking the lines and only
counting bug-fixes that involve code that was introduced in the past. If instead this is
ignored as was in this thesis, the file-based results have the advantage of being able to
predict future bugs in code that also was introduced in the future.

Finally, the same improvements for identifying bug-fix commits for the algorithm should
be applied to the evaluation process so that the rules for past and future bugs are the
same.
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A. Linespots Usage

This section holds information about how to reproduce the results used in the evaluation
process and how to use the Linespots algorithm on any repository.

A.1. Reproduction

To reproduce the results from the evaluation process the following commands can be
used. If you are only interested in the results and not actually want to reproduce them,
you can get them in the result repository1

First clone the repository of the project for which the results should be reproduced:

• Evolution: https://github.com/GNOME/evolution
• Httpd: https://github.com/apache/httpd
• coala: https://github.com/coala/coala

git clone project
git clone https://gitlab.com/sims1253/Linespots.git
cd Linespots
git checkout d798da599f292191ad16fc144730330045075154
cp linespots.py /path/to/test/repository/linespots.py
cp evaluate.py /path/to/test/repository/evaluate.py
cd ~/path/to/test/repository

Then run the corresponding command for the project once as given in section A.1.2 and
once with the –line True flag addition. The results will be stored in the linespots folder.
You have to move the results after each run as the folder is overwritten otherwise.

A documentation for the command line options can be found in the readme of the
repository or via the -h option.

A.1.1. Example

As an example, this would be the complete procedure for Evolution:

git clone https://github.com/GNOME/evolution
git clone https://gitlab.com/sims1253/Linespots.git
cd Linespots
git checkout d798da599f292191ad16fc144730330045075154
cp linespots.py ../evolution/linespots.py
cp evaluate.py ../evolution/evaluate.py

1https://gitlab.com/sims1253/Linespots-Results
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A. Linespots Usage

cd ../evolution
python3 evaluate.py -o 8abd509a8fd1bdc4c58c08c2a35d1cf11f7ab67f
-d 150 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
1500 -f 25 50 75 100 125 150 175 -g "Bug [1-9][0-9]*"

mv linespots linespotsFiles

python3 evaluate.py -o 8abd509a8fd1bdc4c58c08c2a35d1cf11f7ab67f
-d 150 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
1500 -f 25 50 75 100 125 150 175 -g "Bug [1-9][0-9]*"--Line True

A.1.2. Project Specific Commands

Gnome Evolution

For the scatter plots:

python3 evaluate.py -o 8abd509a8fd1bdc4c58c08c2a35d1cf11f7ab67f -d 25 50
75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
600 700 800 900 1000 1100 1200 1300 1400 1500 -f 25 50 75 100 125 150
175 200 225 250 275 300 325 350 375 400 425 450 475 500 600 700 800 900
1000 -g "Bug [1-9][0-9]*"

For the evaluaton data:

python3 evaluate.py -o 8abd509a8fd1bdc4c58c08c2a35d1cf11f7ab67f -d 150
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 -f 25 50
75 100 125 150 175 -g "Bug [1-9][0-9]*"

Apache Httpd

For the scatter plots:

python3 evaluate.py -o b7a493d92fa60c339244bf6f7ff0dca29c95e562 -d 25 50
75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
600 700 800 900 1000 1100 1200 1300 1400 1500 -f 25 50 75 100 125 150
175 200 225 250 275 300 325 350 375 400 425 450 475 500 600 700 800 900
1000 -g fix

For the evaluaton data:

python3 evaluate.py -o b7a493d92fa60c339244bf6f7ff0dca29c95e562 -d 150
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 -f 25 50
75 100 125 150 175 -g fix

coala

For the scatter plots:
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A.2. Algorithm Usage

python3 evaluate.py -o 3448554d48423e5082cd86b3a1a9b708b147a7de -d 25 50
75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
600 700 800 900 1000 1100 1200 1300 1400 1500 -f 25 50 75 100 125 150
175 200 225 250 275 300 325 350 375 400 425 450 475 500 600 700 800 900
1000 -g "Fixes https:"

For the evaluaton data:

python3 evaluate.py -o 3448554d48423e5082cd86b3a1a9b708b147a7de -d 150
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 -f 25 50
75 100 125 150 175 -g "Fixes https:"

A.2. Algorithm Usage

To apply the Linespots Algorithm to any repository clone the Linespots repository,
copy the linespots.py file into the repository you want to analyse and run the following
command:

python3 linespots.py

Additional parameters are available. More information can be obtained with the -h flag.
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B. Abbreviations

Abbreviation Long Form
CEC cost effectiveness curve
loc lines of code
regex regular expression
AUCEC area under cost effectiveness curve
AUCEC20 area under cost effectiveness curve at 20% loc

Table B.1.: Abbreviations
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C. Results

As the amount of Plots generated for a single project is too high to be displayed here,
only the scatter plots and box plots will be shown. The same applies for the metrics for
individual parameter combinations.

To see the full results either use the result repository1 or reproduce them yourself as
described in the previous chapter.

1https://gitlab.com/sims1253/Linespots-Results
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C. Results
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Figure C.1.: coala Scatter Plots for the AUCEC
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C. Results
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Figure C.3.: coala Scatter Plots for the AUCEC
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Figure C.4.: Httpd Box Plots
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Figure C.5.: coala Scatter Plots for the AUCEC
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Figure C.6.: coala Box Plots
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