
An Analysis of Linespots and its Utility
in Realistic Scenarios

Master’s thesis in Computer science and engineering

Maximilian Scholz

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

An Analysis of Linespots and its Utility in
Realistic Scenarios

Maximilian Scholz

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

An Analysis of Linespots and its Utility in Realistic Scenarios
Maximilian Scholz

© Maximilian Scholz, 2018.

Supervisor: Richard Torkar, Computer Science and Engineering
Examiner: Jan-Philipp Steghöfer , Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

An Analysis of Linespots and its Utility in Realistic Scenarios
Maximilian Scholz
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Fault prediction is a promising technique that can potentially help developers build
software with fewer faults. Bugspots is an algorithm developed by Google, that
is used for its simplicity and short run times and is used as a baseline for other
fault prediction algorithms. Linespots is a variant of Bugspots that works on lines
instead of files, thus potentially improving performance through higher precision. In
this thesis, we analyzed the effect different weighting-functions and age-calculations
have on the performance of Linespots, investigated the possibility to turn Linespots
into a classifier and compared the performance and results of Linespots to those of
Bugspots. Based on the algorithms, weighting-functions and age-calculations, we
used a full factorial experiment design where we evaluated a total of 65 revisions
of 23 open source projects from GitHub and analyzed the resulting 780 samples
using Bayesian data analysis. We found that none of the weighting-functions or
age-calculation variants had any reliable effect on the performance of Linespots and
that the classification performance of Linespots makes it unsuited for production use.
Furthermore, we found that while the ranked result lists differ between Bugspots
and Linespots, the averaged predictive performance is similar. However, Linespots
tends to outperform Bugspots for the early parts of the result list. These findings
implicate that Linespots could be a better baseline choice for fault prediction than
Bugspots, but there is more work needed to identify the optimal parameters for
Linespots. Moreover, additional investigations are needed into interactions between
different parameters and both the weighting-function and age-calculations, as well
as the methodology of using a pseudo future for evaluation.

Keywords: Bugspots, computer science, software engineering, project, thesis, fault
prediction, Linespots, Bayesian data analysis, fault localization.

v

Acknowledgements
I want to thank Richard Torkar for the support and guidance he has given me since
the first time I we met. The work on this thesis essentially started with a question
I had for him two years ago and contains countless hours of his time answering my
never ending inquiries. You taught me how to be a better researcher and how to
wield the obscure power of Bayes.
I would also like to thank Mareile Knudsen, Thorbjörn Junge, Dennis Wurm and
Sebastian Schlaadt as well as my parents and brother for the support and feedback
they offered throughout my time working on this thesis. I could not have done this
without you.
Finally, I would like to thank the stan community [42] for their patience with my
questions and the welcoming atmosphere they offered.

Maximilian Scholz, Gothenburg, August 2019

vii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Problem and Purpose . 2

1.1.1 Research Question 1: What kind of weighting function pro-
duces the best results for Linespots? 2

1.1.2 Research Question 2: How does index-based age calculation
influence the predictive performance of Linespots compared to
time stamp based age calculation? 3

1.1.3 Research Question 3: What is a good cut-off-point to turn
Linespots into a classifier? . 3

1.1.4 Research Question 4: What is the prediction performance of
Linespots compared to Bugspots? 3

1.1.5 Research Question 5: Do Bugspots and Linespots predict
faults in the same order? . 3

2 Background 5
2.1 Fault Prediction . 5

2.1.1 Fault Localization . 5
2.1.2 Granularity . 6
2.1.3 Result Types . 6
2.1.4 Applicability . 6

2.2 Past Faults . 6
2.2.1 Identification of Faults . 7

2.3 Bugspots . 7
2.3.1 Weighting Functions . 8
2.3.2 Relative Commit Age . 9

2.4 Linespots . 10
2.4.1 Determining Faulty Elements 11
2.4.2 Scoring Lines . 11
2.4.3 Implementation Changes . 11
2.4.4 Predictive Performance . 12

2.5 Relevance to Practice . 12

3 Methods 15

ix

Contents

3.1 Objectives . 15
3.1.1 Predictive Performance . 15
3.1.2 Optimal Cut-Off Point . 15
3.1.3 Ranking Comparison . 16

3.2 Experimental Design and Preparation 16
3.3 Metrics . 16

3.3.1 Cost-Effectiveness . 17
3.3.2 Precision and Recall . 17
3.3.3 EXAM . 19
3.3.4 EXAMF . 19
3.3.5 Einspect@n . 19
3.3.6 Hit Density . 19
3.3.7 Average Rank Difference . 20
3.3.8 Comparing Granularities . 20
3.3.9 Influence of Sorting on Metrics 20

3.4 Dataset . 21
3.4.1 Sources . 21
3.4.2 Sample Size . 21
3.4.3 Building the Dataset . 22

3.5 Validation Data . 24
3.6 Parameters . 25

3.6.1 Fix Indicator . 25
3.6.2 Weighting Function and Time Version 25
3.6.3 Origin . 25
3.6.4 Depth . 25
3.6.5 Future . 26

3.7 Procedure . 26
3.8 Analysis . 27

3.8.1 Exploration and Simulation 27
3.9 Projection Predictive Feature Selection 27

3.9.1 Prior Sensitivity Analysis . 29
3.10 Model Design . 31

3.10.1 Model Diagnostics . 31
3.10.2 Model Comparison . 31
3.10.3 Model Interpretation . 32

4 Results 33
4.1 Exploration . 33
4.2 Research Question 1 . 36

4.2.1 EXAM Results . 36
4.2.2 AUCECEXAM Results . 38

4.3 Research Question 2 . 40
4.3.1 EXAM Results . 40
4.3.2 AUCECEXAM Results . 43

4.4 Research Question 3 . 45
4.5 Research Question 4 . 46

x

Contents

4.5.1 EXAM Results . 46
4.5.2 AUCECEXAM Results . 49
4.5.3 RQ4: EXAM25 Results . 51
4.5.4 RQ4: EInspect25EXAM Results 53

4.6 Research Question 5 . 55

5 Discussion 57
5.1 What kind of weighting function produces the best results for Linespots? 57
5.2 How does index-based age calculation influence the predictive perfor-

mance of Linespots compared to time stamp based age calculation? . 58
5.3 What is a good cut-off-point to turn Linespots into a classifier? . . . 59
5.4 What is the prediction performance of Linespots compared to Bugspots? 60
5.5 Do Bugspots and Linespots predict faults in the same order? 61
5.6 Other Observations . 62

5.6.1 Language and Domain Differences 62
5.7 Threats to Validity and Limitations 62

5.7.1 Faults in the Implementation 62
5.7.2 Training on Evaluation Data 63
5.7.3 Sourcing of Training and Validation Data 63
5.7.4 Impact of Source and Choice 64
5.7.5 GitHub as Data Source . 64
5.7.6 Bad Smells . 65

5.8 Future Work . 65
5.8.1 Standard Evaluation Suite . 65
5.8.2 Analyze Smaller Projects . 65
5.8.3 Linespots Performance . 66
5.8.4 Dataset Building . 66

6 Conclusion 69

Bibliography 71

A Dataset I
A.1 Past Work . I
A.2 Drawing Process . II

B Projpred Results VII

C Models XIII
C.1 Research Question 1 . XIII

C.1.1 EXAM . XIII
C.1.2 AUCECEXAM . XIII

C.2 Research Question 2 . XIV
C.2.1 EXAM . XIV
C.2.2 AUCECEXAM . XIV

C.3 Research Question 4 . XV
C.3.1 AUCECEXAM . XV

xi

Contents

D Model Diagnostics XVII
D.1 RQ1 Diagnostics . XVII

D.1.1 EXAM Model 1 . XVII
D.1.2 EXAM Model 2 . XIX
D.1.3 AUCECEXAM Model 1 . XXI
D.1.4 AUCECEXAM Model 2 . XXIII

D.2 RQ2 Diagnostics . XXV
D.2.1 EXAM Model 1 . XXV
D.2.2 EXAM Model 2 . XXVII
D.2.3 AUCECEXAM Model 1 . XXIX
D.2.4 AUCECEXAM Model 2 . XXXI

D.3 RQ4 Diagnostics . XXXIII
D.3.1 EXAM Model 1 . XXXIII
D.3.2 EXAM Model 2 . XXXV
D.3.3 AUCECEXAM Model 1 . XXXVII
D.3.4 AUCECEXAM Model 2 . XXXIX
D.3.5 EXAM25 . XLI
D.3.6 EInspect25EXAM . XLIII

xii

List of Figures

2.1 Google Weighting Function . 8
2.2 Linear and Flat Weighting Function 9
2.3 Difference between timestamp and index-based commit weighting . . 10

3.1 A High Level Overview of the Process used for this Thesis 16
3.2 Cost-Effectiveness Curves for a Random and a More Optimal Algorithm 18
3.3 Origin, depth and future on the commit history 24
3.4 varsel_plot and mcmc_areas plot for EXAM prediction in RQ1 and

RQ2 . 28
3.5 Curves for a wide and a narrow prior 30
3.6 Curves for Normal(0, 0.5) priors . 30

4.1 Densities of AUCECEXAM and AUCECDENSITY with 2 SD intervals 34
4.2 Density of EXAM and correlation of EXAMF and hdMaxLOCEXAM 34
4.3 EXAM and AUCECEXAM results for Linespots for different Lan-

guages and Domains . 35
4.4 Posteriors and marginal effects for the weighting functions in Model 4.1 37
4.5 Contrasts between the different weighting functions based on poste-

rior predictions in Model 4.1 . 38
4.6 Posteriors and marginal effects for the weighting functions in Model 4.2 39
4.7 Contrasts between the different weighting functions based on poste-

rior predictions in Model 4.2 . 40
4.8 Posteriors of the coefficients . 42
4.9 Posteriors and contrast between the different time versions based on

posterior predictions in Model 4.3 . 42
4.10 Posteriors of the coefficients . 44
4.11 Posteriors and contrast between the different time versions based on

posterior predictions in Model 4.4 . 44
4.12 Densities of hdMaxLOCEXAM and EXAMF for Linespots samples . 45
4.13 EXAM25, precision and recall densities for Linespots samples 46
4.14 Posteriors of Bugspots . 48
4.15 Marginal effects and contrast based on posterior predictions for both

algorithms in Model 4.5 . 49
4.16 Posteriors of Bugspots . 50
4.17 Marginal effects and contrast based on posterior predictions for both

algorithms in Model 4.6 . 51
4.18 Posteriors of Bugspots . 52

xiii

List of Figures

4.19 Marginal effects and contrast for both algorithms based on posterior
predictions in in Model 4.7 . 53

4.20 Posteriors of Bugspots . 54
4.21 Marginal effects and contrast based on posterior predictions for both

algorithms in Model 4.8 . 55
4.22 Mean absolute rank difference of faults between Bugspots and Linespots 56

5.1 Influence of Source and Choice on EXAM results for Bugspots and
Linespots . 64

B.1 varsel_plot and mcmc_areas plot for AUCECEXAM prediction in
RQ1 and RQ2 . VII

B.2 varsel_plot and mcmc_areas plot for EXAM prediction in RQ4 . . . VIII
B.3 varsel_plot and mcmc_areas plot for EXAM prediction in RQ4 . . . IX
B.4 varsel_plot and mcmc_areas plot for EXAM25 prediction in RQ4 . . X
B.5 varsel_plot and mcmc_areas plot for EInspect25EXAM prediction

in RQ4 . XI

D.1 Rhat and n_eff for Model C.1 . XVII
D.2 Acceptance and divergent transitions for model C.1 XVIII
D.3 Step size and tree depth for model C.1 XVIII
D.4 Energy and trace plots for model C.1 XIX
D.5 Rhat and n_eff for model 4.1 . XIX
D.6 Acceptance and divergent transitions for model 4.1 XX
D.7 Step size and tree depth for model 4.1 XX
D.8 Energy and trace plots for model 4.1 XXI
D.9 Rhat and n_eff for Model C.2 . XXI
D.10 Acceptance and divergent transitions for Model C.2 XXII
D.11 Step size and tree depth for Model C.2 XXII
D.12 Energy and trace plots for Model C.2 XXIII
D.13 Rhat and n_eff for Model 4.2 . XXIII
D.14 Acceptance and divergent transitions for Model 4.2 XXIV
D.15 Step size and tree depth for Model 4.2 XXIV
D.16 Energy and traec plots for Model 4.2 XXV
D.17 Rhat and n_eff for Model C.3 . XXV
D.18 Acceptance and divergent transitions for model C.3 XXVI
D.19 Step size and tree depth for model C.3 XXVI
D.20 Energy and trace plots for model C.3 XXVII
D.21 Rhat and n_eff for model 4.3 . XXVII
D.22 Acceptance and divergent transitions for model 4.3 XXVIII
D.23 Step size and tree depth for model 4.3 XXVIII
D.24 Energy and trace plots for model 4.3 XXIX
D.25 Rhat and n_eff for model C.4 . XXIX
D.26 Acceptance and divergent transitions for model C.4 XXX
D.27 Step size and tree depth for model C.4 XXX
D.28 Energy and trace plots for model C.4 XXXI
D.29 Rhat and n_eff for model 4.4 . XXXI

xiv

List of Figures

D.30 Acceptance and divergent transitions for model 4.4 XXXII
D.31 Step size and tree depth for model 4.4 XXXII
D.32 Energy and trace plots for model 4.4 XXXIII
D.33 Rhat and n_eff for Model C.5 . XXXIII
D.34 Acceptance and divergent transitions for model C.5 XXXIV
D.35 Step size and tree depth for model C.5 XXXIV
D.36 Energy and trace plots for model C.5 XXXV
D.37 Rhat and n_eff for model 4.5 . XXXV
D.38 Acceptance and divergent transitions for model 4.5 XXXVI
D.39 Step size and tree depth for model 4.5 XXXVI
D.40 Energy and trace plots for model 4.5 XXXVII
D.41 Rhat and n_eff for model C.6 . XXXVII
D.42 Acceptance and divergent transitions for model C.6 XXXVIII
D.43 Step size and tree depth for model C.6 XXXVIII
D.44 Energy and trace plots for model C.6 XXXIX
D.45 Rhat and n_eff for model 4.6 . XXXIX
D.46 Acceptance and divergent transitions for model 4.6 XL
D.47 Step size and tree depth for model 4.6 XL
D.48 Energy and trace plots for model 4.6 XLI
D.49 Rhat and n_eff for model 4.7 . XLI
D.50 Acceptance and divergent transitions for model 4.7 XLII
D.51 Step size and tree depth for model 4.7 XLII
D.52 Energy and trace plots for model 4.7 XLIII
D.53 Rhat and n_eff for model 4.8 . XLIII
D.54 Acceptance and divergent transitions for model 4.8 XLIV
D.55 Step size and tree depth for model 4.8 XLIV
D.56 Energy and trace plots for model 4.8 XLV

xv

List of Figures

xvi

List of Tables

3.1 Project property overview. Src = Source, Ch = Choice, A = Author,
P = Past, R = Random . 23

3.2 loo_compare result for research question 1 EXAM models 32

4.1 Summary of exploration, rounded to 3 decimals or integer, 0 used as
lower limit . 35

4.2 Fixed effects of models C.1 and 4.1 rounded to 3 significant digits . . 37
4.3 loo_compare output for models C.1 and 4.1 37
4.4 Contrast between weighting functions in Model 4.1 rounded to 3 sig-

nificant digits . 38
4.5 Fixed effects of models C.2 and 4.2 rounded to 3 significant digits . . 38
4.6 loo_compare output for models C.2 and 4.2 39
4.7 Contrast between weighting functions in Model 4.2 rounded to 3 sig-

nificant digits . 39
4.8 Fixed effects of models C.3 and 4.3 rounded to 3 significant digits . . 41
4.9 loo_compare output for models C.3 and 4.3 41
4.10 Contrast between time versions in Model 4.3 rounded to 3 significant

digits . 41
4.11 Fixed effects of models Model C.4 and 4.4 rounded to 3 significant

digits . 43
4.12 loo_compare output for models C.4 and 4.4 43
4.13 Contrast between time versions in Model 4.4 rounded to 3 significant

digits . 44
4.14 Mean, Median, 2 and 4 standard deviation intervals for the Linespots

sample . 45
4.15 Fixed effects of models C.5 and 4.5 rounded to 3 significant digits . . 47
4.16 loo_compare output for models C.5 and 4.5 47
4.17 Contrast between algorithms in Model 4.5 rounded to 3 significant

digits . 48
4.18 Fixed effects of models C.6 and 4.6 rounded to 3 significant digits . . 50
4.19 loo_compare output for models C.6 and 4.6 50
4.20 Contrast between algorithms in Model 4.6 rounded to 3 significant

digits . 50
4.21 Fixed effects of Model 4.7 rounded to 3 significant digits 52
4.22 Contrast between algorithms in Model 4.7 rounded to 3 significant

digits . 53

xvii

List of Tables

4.23 Fixed effects of Model 4.8 rounded to 3 significant digits 54
4.24 . 55
4.25 Mean, Median, 2 and 4 SD Intervals rounded to 3 significant digits

or integers . 56

A.1 Project List with Indices . IV
A.2 Project Drawing . V

xviii

1
Introduction

Both individual software systems, as well as the field of software engineering, have
become larger and more complex over the years and, according to Nosek and Palvia
[1], maintenance costs were estimated to make up most of the overall cost of software
systems. This makes the idea of fault prediction more relevant than ever. After
all, an ideal fault prediction algorithm could point developers to all the code that
contains faults and thus reduce the time needed to locate them immensely. One
could also use it to focus on testing and auditing efforts on those areas that contain
the most faults, thus making more efficient use of those efforts.

There have been a lot of approaches to predicting faults in software systems in the
past. Ranging from simple source code based metrics like lines of code (LOC),
class sizes for object-oriented (OO) languages and complexity measures to more
sophisticated metrics that are based on the entropy of changes, process derived
metrics or even socio-technical information. While some of these metrics perform
better than others, most of them show poor performance on their own [8], [13], [26].
With the new wave of machine learning, some models for fault prediction combine
multiple metrics to improve their predictions [7], [8], [14].

Linespots is a novel approach to the ‘past-faults’ fault prediction metric, developed
by me in 2016 as part of my bachelor thesis [18]. It is based on Bugspots [9], [15],
a fault prediction algorithm by Google that was inspired by the work of Rahman et
al. [12] and improves upon it. Bugspots is based on a simple idea: If a file contained
faults in the past, there is a higher probability that it will contain more faults in
the future. This is based on the assumption that whatever caused the past faults
might have lead to more faults that just have not surfaced. The algorithm can then
simply rank files by the number of faults they contained in the past. To this the
Google engineers added a weighting function, to increase the impact more recent
faults have on the ranking. This prevents files that contained faults in the past but
that the team went over and fixed from staying at the top of the ranking for too
long. Linespots took this idea and applied it to individual lines in a project, instead
of whole files. So, while Bugspots reports a list of files, ranked by the weighted faults
in the past, Linespots reports a list of lines, using the same ranking. This offers a
higher resolution of the results and leads to fewer false positives.

The integration of Linespots into the landscape of fault prediction metrics requires
an analysis of its performance as well as a comparison of the predicted faults with
other algorithms. For someone who is building a model for fault prediction, it is

1

1. Introduction

valuable to know if a metric offers additional prediction power to the model. If the
new metric predicts the same faults as another metric that is already in the model,
there would be little gained by adding the new one.

1.1 Problem and Purpose

When building a model for fault prediction, one has to choose which metrics to
include. There is a trade-off in this decision, as more metrics can mean more in-
formation to the model to make better predictions, but more metrics also means
a more complex model, which takes more computational power, provides lower un-
derstandability, increases the risk of overfitting and requires more effort/cost to use
and maintain.

The term feature selection is used in statistics and machine learning to describe the
process of choosing only those features, e.g., metrics that are most valuable for our
model. This is done to restrict model complexity. To make the initial decision about
what metrics to include, an engineer needs information about the pros and cons of
each metric. What information they offer, how expensive they are to compute, what
data they need, the cost of collecting that data, and if they are complementing each
other or merely present proxies for the same information.

As Linespots is a recently proposed version of the ‘past-faults’ metric family, some
of these properties are not yet known or well understood as they might differ from
other metrics in this family. This poses the problem that someone doing fault
prediction cannot know if Linespots is the right metric for the given scenario or not.
Furthermore, these questions are also relevant for other researchers, as it is unclear
if Linespots is a metric worth investigating further at this point.

One purpose of this thesis is to answer some of the most common questions we got
regarding Linespots in the past.

1.1.1 Research Question 1: What kind of weighting function
produces the best results for Linespots?

The first question is related to the weighting function that Lewis et al. [15] proposed
for Google. They mention that the exponential weighting function Google uses is
tuned for their projects and that other weighting functions might work better for
other projects. This leads to the first research question:

2

1. Introduction

1.1.2 Research Question 2: How does index-based age cal-
culation influence the predictive performance of Linespots
compared to time stamp based age calculation?

Another question we received was regarding the way the age of commits is calculated
for the weighting function. For Bugspots, the age of a commit is normalized based
on the UNIX timestamps of the oldest and youngest commits that are analyzed.
The proposed alternative to this is to normalize the age of commits based on their
position in history, regardless of actual passed time. The underlying idea is that
some projects might have slower or faster development cycles and that the time
between commits might skew the impact even if they are consecutive. This leads to
the second research question:

1.1.3 Research Question 3: What is a good cut-off-point to
turn Linespots into a classifier?

While ranked results support some use cases, such as prioritizing efforts, tools like
linters usually work on ‘good or bad’ dichotomies. The investigation of Linespots
capabilities as a classifier requires an analysis of the performance for different cut-
off points. All lines before that point are proposed as faulty, all lines after it as
not-faulty. It might also be useful to find a procedure for how one could derive a
cut-off-point for their project. Answering this question could also be useful to allow
comparison between Linespots and other classifying metrics:

1.1.4 Research Question 4: What is the prediction perfor-
mance of Linespots compared to Bugspots?

The first three research questions can be seen as improving the initial Linespots
implementation. After identifying the parameters that give the best results, we
want to investigate how Linespots performs in this improved state to update the
comparison done in the bachelor thesis and allow for a better estimation of where it
lies in the landscape of prediction metrics.

1.1.5 Research Question 5: Do Bugspots and Linespots pre-
dict faults in the same order?

Finally, we want to investigate the faults that Linespots predicts in comparison to
the faults other metrics predict to see if they are similar or if we can find differences.
This is interesting as too similar results could indicate that using both metrics
combined does not offer additional benefits.

3

1. Introduction

4

2
Background

In 2011, Rahman et al. [12] discovered that a very simple ranking of source files
based on the number of past-faults in those files was almost as useful for predicting
future faults as the more complex BugCache algorithm they were developing. Based
on this, Lewis and Ou [9] proposed their Bugspots algorithm that added a weight
decay for older faults to that basic idea. Both of these algorithms are proposing
whole files for inspection, something that comes with a lot of overhead of non-faulty
lines.

The above was the basis for my bachelor’s thesis [18] that applied the past-faults
idea to individual lines of code and showed promising improvements in hit density.

2.1 Fault Prediction

Fault prediction is the process of using statistical techniques, including machine
learning, to predict where faults might occur in the code of a project, usually before
any failure. The process of prediction can classify parts of the code as faulty or not
faulty, can flag fault-inducing modifications to the projects or rank code elements
by their likelihood of containing faults. Common approaches for fault prediction are
based on static code metrics like size and complexity and object-oriented metrics
like coupling, cohesion and inheritance. More recently, process metrics that include
development process information, are being developed. This includes the past faults
class that Linespots is part of, as well as concepts like code churn and socio-technical
networks [14].

2.1.1 Fault Localization

Fault localization is similar to fault prediction, in that both try to point developers
to problematic code. The main difference is that fault localization is used after a
failure, which means it can utilize information that can only be collected by running
the program, like testing information or dynamic analysis. So fault localization tries
to localize a fault that led to failure, while fault prediction is more of a preventive
measure, trying to predict faults before they lead to failures. While the two are

5

2. Background

considered as two different things, they do produce very similar, if not the same,
results. Namely a proposal of code that is likely to contain faults.

2.1.2 Granularity

The granularity of an algorithm describes the type of code unit it proposes as more
or less fault-prone. Common granularities are binaries, modules, files, methods,
classes and statements [4], [26] There are advantages and drawbacks for different
granularities. Files, for example, are easy to work with and language-agnostic but
proposing whole files as faulty is not very precise. Methods or functions, classes and
statements are closer to the way developers work with the code in most languages
and more precise than files, but their handling has to be implemented individually for
each language. Lines lack the context that language constructs offer but are agnostic
of programming language. This makes them a compromise between the easy to
handle and language agnostic file granularity and the higher precision that language
constructs can offer. For that reason, Linespots works on the line granularity.

2.1.3 Result Types

The two common ways of presenting results are as a binary classification of faulty and
not faulty, and as a ranked list with elements that are most likely to contain faults
at the top. The faulty elements of classification can also be ranked or grouped by
severity as well. While the classification of elements into faulty or not faulty paints
a clear image of certainty, it lacks the ability to nuance the results. If no further
prioritization is offered, the number of elements in the faulty class can be too high
for practical purposes. A ranked list allows the user to set their thresholds as needed
but requires more competency in interpreting the position of elements in the list.

2.1.4 Applicability

The scenario that we encountered most often for how to use fault prediction in a
development workflow was for code inspection [12], [15] and code testing [26]. The
results of the fault prediction would tell developers what elements have a higher risk
to contain faults and thus prioritize their efforts into those elements. Lewis et al.
[15] found that this type of information does not support developers during code
inspection and instead proposed to use the results of fault prediction to focus testing
efforts.

2.2 Past Faults

As mentioned before, the initial idea came from Rahman et al. [12] when they
tried to compare their newly developed fault prediction algorithm, FixCache, to a

6

2. Background

comparatively simple algorithm that ranked all files in a project by the number of
faults the files contained in the past. The simple idea was that more faults in the
past would lead to more faults in the future. The argument is that whatever lead to
the past faults, such as complicated code, complex algorithms or a tired developer
could lead to more faults in the same area. This algorithm performed surprisingly
well and they concluded that “The naive model is actually about the same utility for
inspections, under the aucec20 measure, as the best possible setting for FixCache.”
Rahman et al. [12].

This meant that without further research into FixCache the naive model would be
the better choice.

2.2.1 Identification of Faults

We are not aware of a technique that would allow us to know all existing faults in a
software system, which makes testing predictions difficult. In the past, researchers
have used the fixed faults, and sometimes the identified faults, as proxies. Fixed
faults are easy to use, as they show what part of the code contained the fault and
how to correct it. In addition to the fixed faults, information from a bug tracker can
be used to identify faults that have been located but not yet fixed. This, however,
requires information about the location of the fault inside of the bug tracker, which
might not be available on the necessary granularity level. As Linespots works lines,
we follow the approach of using fixed faults as an indicator of existing faults. Any
information about fault location that might exist in a bug tracker, will most likely
not be detailed enough to include it into the algorithm.

Linespots currently identifies fault fixing commits by parsing the commit message
of each commit and searching for a given regular expression (regex). These regular
expressions usually are indicators like ’Fix’ or ’Bug’. As these indicators depend
on commit message rules of each project, they have to be set on a per-project
base. Many projects do not have clear rules for differentiating commit messages
for fault fixing commits and other types of commits, which makes them unsuited
for usage with Linespots. Another downside of using only the commit message
for identification was shown by D’Ambros et al. [8], who found that simply doing
this kind of string matching decreases the accuracy of the predictions and propose
checking the matches with existing bug databases. This would be possible for most
of the projects in this thesis as they use the GitHub issue tracker. However, this
was not included due to time constraints, as we did not find a readily available
implementation of such a lookup and had to pass on this due to time limitations.

2.3 Bugspots

Based on the findings of Rahman et al. [12], Lewis et al. [15] proposed an improved
version of the initial idea. They found that the algorithm was ranking files too high
that contained a lot of faults in the past but were fixed since then. So files would

7

2. Background

never sink to the bottom of the ranking, even if they had been fixed for a long time.
They introduced “Time-Weighted Risk”[15], a weight decay for older faults. This
meant that more recent faults influence the ranking stronger than older ones. So
files that contained a lot of faults in the past receive lower ranks if they don’t contain
faults in more recent time. Figure 2.1 shows the weighting function used by Google
[9]. The x-axis shows the normalized age of a commit between 0 and 1. 1 being the
newest commit and 0 being the oldest one. The y-axis shows by how much the score
of a file increases if a commit that modified the file fixes a fault.

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Relative Commit Age

W
ei

gh
t

w(x)=
1

exp(− 12x + 12)

Google Weighting Function

Figure 2.1: Google Weighting Function

2.3.1 Weighting Functions

Lewis et al. [15] argue that their weighting function should ideally be dynamically
adapted to count commits in a 6 to 8 month window before they become inconse-
quential based on their domain knowledge and experience for their projects. This
introduces the idea of finding the right weighting function for different projects. As
Lewis et al. [15] did not share their process and intermediate results of coming up
with a weighting function, we can only speculate about the influence on performance
different weighting functions can have. For this reason, we compare the weighting
function proposed by Lewis et al. [15] with a linear and a flat weighting function as
shown in Figure 2.2.

While Lewis et al. [15] propose a more generic weighting function in their paper, we
keep the w=12 they proposed. Changing w, however, seems to be a very powerful
tool for tuning the performance of Bugspots to a certain project. This is something
that might be interesting for future work. The flat weighting function in Figure
2.2b makes the Bugspots algorithm perform as if there is no weight decay at all.

8

2. Background

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Relative Commit Age

W
ei

gh
t

w(x) = x

Linear Weighting Function

(a) Linear

0.950

0.975

1.000

1.025

1.050

0.00 0.25 0.50 0.75 1.00
Relative Commit Age

W
ei

gh
t

w(x) = 1

Flat Weighting Function

(b) Flat

Figure 2.2: Linear and Flat Weighting Function

All commits have the same influence on the score of a file, regardless of their age.
This is meant as a control for the claim of Lewis et al. [15] that the use of a weight
decay improves performance. Finally, we test a linear weighting function shown in
Figure 2.2a that works as a middle ground between the initial flat weighting function
and Lewis et al. [15] exponential weighting function. As the linear weighting func-
tion does offer weight decay, it could give insight into why the weighting function
improves performance. The linear function performing closer to the flat one could
mean that it is the very steep decline in relevancy that the exponential function has
that is responsible for the improved performance. It would also support the argu-
ment that tuning the weighting function to a project might improve performance,
as not any kind of weight decay would help. If the linear function performs closer
to the exponential one, it might be that just any weight decay is useful and tuning
weighting functions could have less impact than claimed by Lewis et al. [15].

2.3.2 Relative Commit Age

Directly connected to the weighting function is the idea of the relative commit
age. Lewis et al. [15] do not explain how they calculate the normalized commit
age but existing implementations [28] base the age calculations of commits on the
commit timestamps. While this seems straight forward initially, there may be some
drawbacks to this.

The main downside that came up a lot during our past work [18] is that the phys-
ical time between two commits might not represent the time to develop something
properly and might influence performance on projects that have faster or slower
development or commit cycles. Another problem that came up during the develop-
ment of the current Linespots reference implementation is that due to capability to

9

2. Background

●

●

AAA

BBB

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Relative Commit Age

W
ei

gh
t

w(x)=
1

exp(− 12x) + 12

Google Weighting Function

(a) Timestamp based commit weights

●

●

AAA

BBB

0.0

0.1

0.2

0.3

0.4

0.5

0.00 0.25 0.50 0.75 1.00
Relative Commit Age

W
ei

gh
t

w(x)=
1

exp(− 12x) + 12

Google Weighting Function

(b) index-based commit weights

Figure 2.3: Difference between timestamp and index-based commit weighting

rewrite history in Git, timestamps might be unreliable and in some corner cases, the
HEAD commit of a branch can be older than a commit preceding it in the branch
structure.

The alternative to time stamp based age calculation is the index-based age calcu-
lation. For this, all commits are indexed in their order on the Git branch and the
relative age is calculated based on the position of a commit relative to the highest in-
dex. Figure 2.3 shows an example of two commits on the Google-weighting-function,
one with the timestamp-based age calculation and one with the index-based time
calculation. As can be seen in the example, the weight of commit A changes de-
pending on how the relative age is calculated. This can happen if the distance in
time between the two commits is not the same as the distance in indices. As this
difference can influence the performance, we analyze the difference in performance
between the two versions and try to find any patterns that emerge, like certain
domains working better with one or the other version.

2.4 Linespots

The Linespots algorithm is based on Bugspots but instead of scoring and predicting
whole files, it works on a line level. This means that each line in a project has a
score attached to it and that the output is the list of all lines in a project, ranked
by highest line score.

This change increases the complexity of the implementation between Bugspots and
Linespots. While Bugspots can simply list all files that were modified during a
commit and increase their scores in case the commit was a fix, Linespots has to
parse the diffs attached to the commit, track added and removed lines, and handle

10

2. Background

a lot more corner cases.

2.4.1 Determining Faulty Elements

After identifying a fix-commit, it is necessary to identify the faulty lines from that
commit. Pearson et al. [21] define faulty lines as those lines that get removed or
changed during a fix-commit. If only new lines are added, they propose to tag
the line immediately following the newly added lines as faulty. This corner case
is not part of the implementation that was used for the evaluation but from our
observation most fixing commits contain removed lines so the impact of this should
be small. Although these findings are from the area of fault location, they apply
to fault prediction as we want to locate the past faults to base our predictions on
them.

2.4.2 Scoring Lines

With Bugspots all files start with a score of 0, as new files cannot contain faults
before they exist. This concept does not work for lines however, as GIT only works
with added and removed lines. To allow line scores to increase over time if they are
part of fixing commits, new lines start with the average score of the hunk they are
added to. Hunks are created by GIT when displaying diffs and show part of a file
with the corresponding line changes. Hunks give some unchanged lines before and
after the first and the last added or removed line as context, so changes to one file
can be displayed through multiple hunks if far enough apart. The choice for using
hunks as a measure of the locality was made out of convenience.

2.4.3 Implementation Changes

The initial implementation for Linespots was proposed in 2016 [18] and evolved since
then. Going through two rewrites over the years, it is easier to work with today and
can be used on more projects than the initial implementation. The change that is
most relevant for this thesis is the support of merge commits. While the original
implementation could not be used on projects that use merges in their workflow,
due to being unable to parse merge commits, the current implementation has full
support for merge commits with arbitrary numbers of parents. This change has
increased run times for Linespots. While we did not thoroughly test for this, we
assume it to take one to two orders of magnitudes longer. The run times, however,
were not a concern for this thesis and we presume that it can be lowered by around
at least an order of magnitude with an improved implementation.

Another important addition to the implementation is the support for different file
encodings as this again allows Linespots to be run on a wider range of projects. File
encodings are both relevant for parsing the diffs and for counting the number of
lines in the whole project, which is needed for the evaluation.

11

2. Background

Besides the two big changes, several Git corner cases and different file encodings
and are now properly handled. Many of these stem from the fact that Linespots
currently parses the diffs manually and as GIT is a complex system, there are many
cases that we encountered only once during our work on Linespots. All these cases
that are now cared for again allow Linespots to run on more projects without failure
and increase the reliability of the results.

2.4.4 Predictive Performance

In our past work [18], we found that the inspection of the highest-ranked 5% LOC
resulted in 3.91% faults found for Bugspots and 47.7% faults found for Linespots
on average. This result showed the potential for big improvements in predictive
performance but was lacking rigour in its methods. This is why this thesis will look
further into the performance of Bugspots and Linespots.

2.5 Relevance to Practice

To further the knowledge in a field, it is important to discuss how the results of this
thesis might influence future research on fault prediction and the work of practition-
ers in software engineering.

Bugspots or the initial algorithm by Rahman et al. [12] are usually used as a baseline
comparison in the field of fault prediction. The algorithm is rather simple and the
run time is short as well, so any more complex algorithm for fault prediction should
improve on the results that Bugspots delivers. If Linespots would come out to
improve the predictive performance of Bugspots, it could serve as a new baseline for
fault prediction in the future. As long as Linespots’ performance is at least similar
to Bugspots’, it can also serve as a comparison algorithm for other algorithms that
work on a finer granularity than files. This would remove the need to map Bugspots’
results to finer granularities. Finally, Linespots might set the foundation for more
specialized versions of the past faults algorithm family that track language constructs
instead of lines. While these specialized versions would not be language agnostic
any more, they could offer better performance for the cases they cover. If the
performance of Linespots should prove to be below the performance of Bugspots,
this thesis would add evidence to the idea that there is not much to gain from
improving on the idea of Bugspots and efforts should be focused on other areas.

For practitioners, the existence of an open implementation might make the usage
of Linespots easier than other algorithms. As it is language agnostic, there are no
limitations on what projects can use it and the idea of the algorithm is simple so
that it can be understood by developers without a background in information the-
ory. All of these could put Linespots in the position of being an entry point to fault
prediction for one’s project if the performance ends up being sufficient. Anecdotally,
when discussing the general idea of fault prediction and Linespots with visitors of
developer conferences we received positive feedback for the idea of Linespots. We

12

2. Background

talked to visitors of the Europython 2016 and 2017, PyConDE 2017, FOSSDEM2017
and Linuxwochen Wien 2016 and 2017 conferences and presented the results of our
past work [18] in two talks at Europython 2017 and Linuxwochen Wien 2017. In
particular, the fact that it is language-agnostic and has a free and open implemen-
tation available was well received. As most of the benefits of Linespots also apply
to Bugspots, this enthusiasm could just be based on a lack of knowledge about the
field of fault prediction or the fact that fault prediction over-promises as indicated
by Lewis et al. [15].

13

2. Background

14

3
Methods

3.1 Objectives

There are five research questions that we want to investigate. To enable us to answer
them, we first have to clarify what we want to measure and how it will help answer
our questions. The proposed metrics are discussed in detail in the next section.

3.1.1 Predictive Performance

Three of our research questions are related to predictive performance. To recapitu-
late:

RQ1: What kind of weighting function produces the best results for Linespots?
For this question, we have to gather results from Linespots using the three different
weighting-functions and compare them against each other.

RQ2: How does index-based age calculation influence the predictive performance of
Linespots compared to time stamp based age calculation? For this question, we have
to gather results from Linespots using the two different time-versions and compare
them against each other.

RQ4: What is the prediction performance of Linespots compared to Bugspots? For
this question, we have to gather results from Linespots and Bugspots and compare
them against each other.

3.1.2 Optimal Cut-Off Point

RQ3: What is a good cut-off-point to turn Linespots into a classifier?
For research question 3, we want to investigate the ideal cut-off point for Linespots
to turn it into a binary classifier. As this question does not have a unique correct
answer and depends on the needs of the user, we will have to analyze the performance
of Linespots at different possible cut-off points. This would allow users to make an
informed decision knowing the tradeoffs of different cut-off points.

15

3. Methods

3.1.3 Ranking Comparison

RQ5: Do Bugspots and Linespots predict faults in the same order? For
research question 5, we want to investigate, if Bugspots and Linespots rank the lines
in a way that lead to the same ordering of predicted faults.

3.2 Experimental Design and Preparation

The easiest design to test the impact of different factors on a given outcome is a full
factorial design [2]. The usual downside to this kind of design is the amount of data
that is needed, which usually increases the needed time and cost of an experiment.
As we expected no further cost besides our own time and electricity bill, cost was
not a concern for this thesis. And we were hoping to decrease the amount of manual
labour by building a fully automated evaluation suite.

The next step in our design was to find metrics, that are able to measure the things
we want to measure for our objectives in Section 3.1. We describe all the metrics
that we use and how they can help answer the research questions below in Section
3.3.

After deciding on the metrics, we needed a dataset to run the algorithms on and
calculate the metrics from the results. we describe the process of building the dataset
in Section 3.4. As part of the dataset, we also need validation data to calculate the
metrics. Section 3.5 describes the process of how we construct the validation data.

Figure 3.1 shows a high level overview of the process we used for this thesis.

Experiment
Design

Automated
Evaluation Analysis ReportingDataset

BuildingImplementation

Algorithms

Metrics

Dataset
Builder

Evaluation
Suite

Figure 3.1: A High Level Overview of the Process used for this Thesis

3.3 Metrics

The evaluation of our research questions requires metrics to compare the perfor-
mance of different algorithms or the influence of parameters on the performance of
an algorithm. As with most things, there is no one and true metric that incorpo-
rates everything that we would like to measure. Instead, all available metrics have
strengths and drawbacks. In this section, we will explore metrics that have been

16

3. Methods

used in prior work, discuss how they should be used and how to interpret them. We
also argue for our choices of metrics and how they can help answer the questions we
posed earlier.

3.3.1 Cost-Effectiveness

When evaluating the predictive performance of Linespots, we are interested in how
good the ranking of lines is. A more traditional measure for this is the receiver
operating characteristic (ROC) but it has received criticism for not taking cost-
effectiveness into account [7] and assigning “different misclassification cost distribu-
tions for different classifiers.” [6]. The cost-effectiveness is less of a concern with
Linespots, as it works on a line granularity instead of a class one. However, we still
prefer the cost-effectiveness measure that Arisholm et al. [7] propose over the ROC,
as it is easier to interpret and can be adapted to include information about severity
and risk of faults if known. While Hand [6] also proposes an alternative to the ROC,
the H measure, we did not include it in this thesis due to time constraints.

The cost-effectiveness initially should solve the problem that simply proposing the
largest files or classes could inflate the performance of an algorithm, as they did
not take into account the size of the proposed elements. Inspecting the largest files
in a project might result in some found faults but will also take a long time. The
proposed solution was a curve that plots the spent effort on the x-axis and the
received benefit on the y-axis. This is called the cost-effectiveness curve (CEC).
If no further information about the complexity of the code and the severity of the
faults is known, this can be done by having the percentage of LOC on the x-axis
and the percentage of faults on the y-axis. This assumes that inspecting each line is
approximately equally hard and all faults to be equally severe. The cost-effectiveness
curve then results from plotting the percentage of faults found, if one were to inspect
all proposed lines up to x.

Figure 3.2 shows an example of two CECs. A trivial algorithm that randomly ranks
lines and a more optimal algorithm like Linespots. The higher the CEC is above
the y=x line of the trivial algorithm, the better. This can be summarized by the
area under the CEC (AUCEC). So the baseline performance of a random algorithm
would be an AUCEC of 0.5 and a perfect algorithm would approach 1. It could
never reach one, as that would require all faults to be found with 0 inspected lines.

3.3.2 Precision and Recall

Precision and recall are both derived from the confusion matrix and common metrics
used to measure the performance of classifiers. We will use an example project where
5 out of 100 elements contain faults to explain the idea of both and give a baseline
performance for a naive algorithm.

Precision describes the proportion of truly faulty elements out the ones that the

17

3. Methods

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
LOC

F
au

lts

Optimal

Random

Optimal and Random Case

Cost−Effectiveness Curve

Figure 3.2: Cost-Effectiveness Curves for a Random and a More Optimal
Algorithm

classifier classified as faulty:

True Positive
True Positive + False Positive

Using a trivial algorithm that classifies all elements of the sample project as faulty,
it would have a precision of 5 / (5 + 95) = 0.05 as only five out of the 100 elements
it claimed to be faulty truly are faulty.

Recall describes the proportion of correctly classified faulty elements out of all
faulty elements:

True Positive
True Positive + Fase Negative

An algorithm that classifies all elements into one class can either achieve a recall
of 0 or 1. An algorithm that randomly classifies elements into either class would
achieve a mean recall of 0.5.

Precision and recall often have an inverse relationship, as increasing one can lead
to decreasing the other. For this reason, they are usually discussed in combination
and while ideally, both would be 1, one might be more important than the other in
the context of the classification. For example, a high precision might be needed for
developers to accept a tool, as it means that there are few false alarms. There might
however be projects, where missing a fault is worse, in which case a higher number
of false alarms might be acceptable to ensure a higher number of faults discovered.
This type of tradeoff can be solved by setting one of the two metrics to a necessary
value, for example, a minimal recall of 0.9, and then optimizing the other metric
under this condition.

18

3. Methods

3.3.3 EXAM

Proposed by Wong et al. [5], it is the percentage of elements that has to be inspected
until finding a faulty element, averaged across all elements. [26] A lower EXAM score
would mean that the faulty elements are ranked higher and thus indicate a better
performing algorithm.

We also propose EXAMN, where N denotes the percentile of faults found when
inspecting the ranked list. EXAM25, for example, would give the average percentage
of elements to inspect to find the first 25 per cent of faults. We use N= 25, 33, 50, 75,
and 95 to indicate different points of threshold that might be useful when choosing
cut-off points for classification.

3.3.4 EXAMF

Based on the idea of the EXAM score, we propose EXAMF as being the percentage
of elements that have to be inspected until the first faulty element is found. When
collected for different projects and revisions, it can serve as an indicator for a min-
imum of lines to inspect to get any benefit. When looking at the distribution of
EXAMF scores over a sample set, it is possible to propose the upper 95 percentile
as a cut-off point, for example, to find at least one fault in 95 per cent of the cases.

3.3.5 Einspect@n

Proposed by Zou et al. [26] and based on the acc@n metric by B. Le et al. [17], it
counts the number of faults that were successfully localized within the top n positions
of the resultant ranked list [26]. We use the Einspect@10 versions, as Parnin and
Orso [10] found that developers will only inspect the first few entries of a ranked
list. While Zou et al. [26] also use lower n in their study, their results indicate that
Bugspots predictive performance is too low to give reasonable results when n is too
small. For this reason we keep n=10 for comparability with Zou et al. [26].

3.3.6 Hit Density

Based on the defect density of Nagappan and Ball [3] and closed bug density of
Rahman et al. [12] we use hit density [18] to describe the ratio of faults found
per lines inspected. Hit Density = We will use the point of maximum hit density
as another indicator for a cut-off point, as it presents the point of highest cost-
effectiveness.

19

3. Methods

3.3.7 Average Rank Difference

When given two ranked lists containing the same items, but potentially different
ranks per list, we can calculate the difference in ranks per item and use the average
difference across all items as a measure of how similar the rankings are.

3.3.8 Comparing Granularities

As Bugspots and Linespots report their results on different granularity levels, we
have to be careful when comparing them. One way to compare them is to transform
the file-based results of Bugspots into line-based results, as proposed by Zou et al.
[26]. We do this by setting each line’s score to the corresponding file’s score. This
results in lists of ranked lines for both Bugspots and Linespots, so all metrics can
be calculated equally for both of them.

Depending on the exact way of how metrics are calculated, this kind of transforma-
tion can impact the results for Bugspots. We argue that this does not put Bugspots
at a disadvantage, as we found that past research had calculated results in a way
that files could only be inspected as a whole. By transforming the results to the
line granularity metrics like EXAM will show better performance for Bugspots due
to the way blocks with the same score are handled. While we do not think this will
influence the results a lot, Bugspots might seem to perform better with this kind of
transformation than without.

3.3.9 Influence of Sorting on Metrics

During the implementation of the metric calculations for this thesis, we noticed that
there is more than one way to calculate some of the metrics. In our past work [18],
we have sorted the Bugspots and Linespots results first by their score, then by their
path and finally their line number. This meant that groups of lines with the same
score from the same file would be ordered in the results list, as they would be in
their file. When calculating the cost-effectiveness and hit density, such a sorting
method imitates a reader inspecting groups of code, following that sorting. So, if
a reader were to inspect multiple lines with the same score, they would sort them
by their paths and then inspect them top to bottom in their containing files. While
this does seem reasonable, it adds assumptions to the reported results that should
be communicated, namely the type of sorting that was done. If one were to sort
lines with the same score in a different way, the resulting metrics might be different,
even though the scores that Linespots calculated are the same.

As an alternative to the path and line number based sorting, we now also report the
cost-effectiveness and hit density metrics based on the Einspect values of each fault.
This represents a random sorting of all lines in a group with an equal score. While
this probably does not represent the inspection behaviour of a developer, it removes
the influence of the sorting that is done and can serve as a baseline.

20

3. Methods

It might be interesting to investigate the influence of different sorting strategies on
the performance of Linespots and other ranking algorithms in the future.

3.4 Dataset

This section describes the process and choices that went into the creation of the
dataset used for the experiment.

3.4.1 Sources

With the growth of services like GitHub, GitLab and BitBucket, access to open
source projects is easy. This makes open source projects interesting for empirical
research, as it is easier to get access to them compared to industry projects. We
chose GitHub as our source, as it offers a large collection of open source projects,
with over 100 million repositories [37]. There might be a bias in the results due to
this, as some communities might choose platforms besides GitHub and the focus on
open source projects. As there has not been a direct comparison of the performance
of fault prediction algorithms for industry projects versus open source projects, this
is a possibility that we cannot rule out. We, however, try to mitigate this risk by
choosing a large sample size and projects from many different domains.

3.4.2 Sample Size

Li et al. [30] found that the average study is done with 11.3 project datasets. They
don’t mention if the studies drew more than one sample per project, which is com-
monly done by using different revisions of the same project. Based on this, we
decided to use at least 12 projects in this experiment, to have an above-average
sample size. The actual sample size would depend on the amount of time available
and other factors as described in Section 3.4.3.

Besides these numbers, we considered doing a traditional or Bayesian power analysis
to calculate the minimum sample size. This proved hard as we had limited prior
information to base our effect sizes on. In addition to that, both are based on p-
values or Bayes factors respectively, both of which were recently discouraged to be
used by Wasserstein et al. [35]. Instead, we decided to start with a sample size that
would be practical to work with under the given time constraints and report the
uncertainties from the posteriors directly. In the case of inconclusive results, we
could add more projects during the thesis time, if time allows for it, or leave it for
future work to use this thesis’ results as priors.

21

3. Methods

3.4.3 Building the Dataset

The first step of assembling the dataset was to build a library of possible projects
that we could choose projects from until we would reach our final sample size. This
library consisted of three sections:

Prior Work Projects as shown in Section A.1. We chose those projects, as they
come from studies that have investigated Bugspots or algorithms similar to it. This
will allow for an easier connection of our results to the existing body of research.

Random Github Projects from the top 1000 GitHub projects, ranked by stars.
Section A.2 shows the complete drawing process and indicates why some of the
projects that were drawn did not qualify for the library. The main reason was that
we decided to require at least 3000 commits, to allow for larger pseudo futures.

Authors Choice Projects based on experience and knowledge of certain domains.
This was primarily done to have a more even distribution of programming languages
and domains in our library. This kind of convenience sampling might introduce bias
in our results, so we marked projects that were added by the authors for later
analysis of the influence.

After building the library, we randomly drew 15 projects from it, which is a nice
number above 12 but simple convenience otherwise. Table A.1 shows the list of all
potential projects and their index, while Table A.2 shows the drawing process itself.
We then added another 6 projects from past studies, as we felt that they might be
underrepresented and then another two projects from the random GitHub section of
our library as we felt that they were underrepresented as well. The resulting project
list is shown in Table 3.1. While there is some randomness to the way we chose the
projects, there is convenience sampling involved again, so as with the sources, we
mark if a project made it from the library into the sample by random chance or by
author choice. An analysis of the influence of the source and decider for each project
is presented in Section 5.7.4 The domain column is based on the Global Industry
Classification Standard [38].

22

3. Methods

Table 3.1: Project property overview. Src = Source, Ch = Choice, A = Author,
P = Past, R = Random

Project Src Ch fix indicator commits language domain
PrestaShop A R fix |fixes 53k PHP 25502020
scikit-kearn A R fix |fixes 24k Python 45102020
BroadleafCommerce A R fix |fixes |fixed 16k Java 25502020
ceylon-ide-eclipse P R fix |fixed 8k Java 45103010
WooCommerce A R fix |fixes 31k PHP 25502020
ffmpeg R R fix |fixed 93k C 50202010
Rails A R fix |fixes 73k Ruby 45102030
Lucene-Solr P R fix 31k Java 45102020
MariaDB Server A R fix |fixed |fixing 185k C++ 45102020
MySQL Server A R fix 148k C++ 45102020
mpchc A R fix 10k C 50202010
junit5 P R fixes 5k Java 45103020
Equinox Framework P R fix 4k Java 45103020
bootstrap A R fix 18k JS 45102030
cpython A R fix |fixes 100k Python 45103020
discourse R A FIX:|fix 33k Ruby 45103010
mongoose R A fix(|fix:|fix 10k JS 45102020
commons-math P A fix|fixed 6k Java 45103020
closure compiler P A fix |fixed 14k Java 45103020
jfreechart P A fix |fixed 3k Java 45103020
coala P A Fixes 4k Python 45103020
evolution P A fix |fixes 44k C 45103010
httpd R A fix 31k C 45102030

23

3. Methods

3.5 Validation Data

To calculate the metrics as described in Section 3.3, we need the output of Bugspots
and Linespots and have to compare them with some kind of validation data or
reality. One problem with fault prediction is that by its nature, it tries to predict
faults that have not led to a failure and thus might not have been detected in the
present. One way to build the validation data, as described in our past work [18], is
to build a pseudo future. This takes advantage of the capability of Git to essentially
time travel. When checking out a commit from the past and then treating it as the
present, we have all commits ahead of the commit as a future to test against. Figure
3.3 shows the concept of creating a pseudo future on the timeline of a Git branch.

The creation of a pseudo future allows us to use the same basic line tracking and fix
inducing commit identification as Linespots uses to build the validation data. We
start with all lines that exist at the pseudo present commit and then walk along
the branch towards the future, tracking line changes and marking lines that are
removed in a fix inducing commit as faulty. We keep track of lines that were added
after the pseudo present, as we do not want to have faults in those lines skew our
results. Only lines that exist at the pseudo present can be proposed to be faulty or
not and only the ranking of those lines should be validated. The size of this pseudo
future will impact the results of an evaluation, as larger pseudo futures will lead to
finding faults that are fixed further from the pseudo present. As there currently is
no empirical research on optimal pseudo future sizes known to us, we suggest using
the largest sized pseudo future possible as it increases the validity of the resulting
metrics. The only downside to using larger pseudo futures are higher run times
for the evaluation and a barrier for smaller projects that might not have enough
commits to allow for the desired size.

Init Commit HEAD
CommitOrigin Commit

Origin

Depth Future

Figure 3.3: Origin, depth and future on the commit history

24

3. Methods

3.6 Parameters

There are parameters for both the Bugspots and Linespots algorithms, and the
evaluation suite that must be set. In this section, we present and argue for the
parameters we used in our evaluation.

3.6.1 Fix Indicator

The fix indicator is the string that identifies fix inducing commits. It is individual
for each project and often not derived from a strict commit message rule. Table
3.1 shows the fix indicators for each project as proposed by us. As shown in the
table, most of the identifiers were derived by us reading through the commit logs
of the projects and deriving a search string by feel. This process is prone to error
and ideally, clear commit message rules would give unambiguous indicators for fix
inducing commits.

3.6.2 Weighting Function and Time Version

Both the Linespots and the Bugspots algorithms rely on a weighting function and
a way to calculate the relative commit age. In Section 2.3.1 we presented three
different weighting functions, and in section [Relative Commit Age] we presented
two different ways to calculate the relative commit age, called time version in the
algorithm. We will use all presented weighting functions and time versions in the
evaluation to answer the respective research questions.

3.6.3 Origin

The origin parameter is the pseudo present commit as discussed in Section 3.5.
It marks the entry point for the Linespots algorithm and the start of the pseudo
future. We randomly chose origins throughout the entire commit history of the
projects, with the condition that enough commits are left for the depth and the
future as described in sections 3.6.4 and 3.6.5. This meant that each origin would
combine a 3000 commit range into one sample. We also decided to not have an
overlap in the overall analyzed commits per sample, as it gives us a larger variety
of analyzed periods over the project histories.

3.6.4 Depth

The depth parameter is used by Bugspots and Linespots and sets the number of
commits they analyze and base their predictions on. There has not been any em-
pirical research done on optimal depth sizes that is known to us but the first im-
plementation, written by a Google engineer that was published used 500 commits

25

3. Methods

as the default value [28], which is also what we used in our past work on Linespots
[18]. Preliminary analysis showed that analyzing more commits results in better
predictions. This follows our intuition, as more information should lead to better
predictions. Based on these preliminary findings, we increase the depth parameter
to 2000 for this experiment. While a depth of 500 leads to shorter run time, a depth
of 2000 presents more of a best-case scenario for both Bugspots and Linespots but
allows us to investigate the potential for both algorithms.

3.6.5 Future

The future parameter sets the size of the pseudo future used to build the validation
data, as described in section [Validation Data]. For this experiment, we use a future
size of 1000 for all samples. Although we have used smaller future sizes of 150
commits in our past work [18], a larger future size is desirable here. So, we chose
1000 commits as it still allowed for a reasonable run time of the evaluation.

3.7 Procedure

As we build a fully automated evaluation suite, the entire experimental procedure
is handled by it. The evaluation suite uses a JSON configuration file that holds all
the necessary information for each project. The linespots.utils.json_builder module
contains the code to create the configuration for this experiment. The script for
running the evaluation suite with the given configuration file is the full-evaluation.py
file.

For each project, the evaluation suite runs each set of (origin, depth, future) multiple
times to test the different algorithms, weighting functions and time versions. First,
it creates the set of all future fixes for a given origin and future, then for each combi-
nation of algorithm, weighting function and time version it runs the algorithm with
the given parameters and calculates the metrics for that run. For this experiment,
this results in 12 runs for each set of (origin, depth, future).

The results are saved in individual CSV files named after the project and after
completing the entire evaluation, they are combined into the full_evaluation.csv file
for convenience.

This setup allows for future research to be based on the same evaluation suite,
simply using a different configuration file. We plan to develop this approach further
and build it into a library for fault prediction benchmarking, as we found a lack of
standardized benchmarking in the field of fault prediction.

26

3. Methods

3.8 Analysis

For this thesis, we follow the process of Bayesian data analysis outlined by Schad
et al. [31]. This chapter outlines the steps we took. It does, however, require
the reader to have a basic understanding of Bayesian statistics. We recommend
Statistical Rethinking by McElreath [23] as an introduction to the methods. We
used stan [41] for statistical modeling through the brms R package [20].

3.8.1 Exploration and Simulation

Before we start building the actual models, we explore the data using descriptive
statistics, histograms, density- and boxplots. This can serve as a first sanity check as
unexpected results could be due to a problem in our process. For example, the first
time we ran the exploration, we noticed that the EXAM scores we got for Bugspots
were far lower than the results of Zou et al. [26]. We investigated and found a fault
in the way we calculated the EXAM scores. This finding also led to the realization
that there are multiple ways to calculate the AUCEC.

After the exploration, we tested our modelling ideas on simulated data first. This
is one of the steps recommended by the stan developers [33] for model validation
but we also found it useful as a starting point before starting the modelling process.
As we know the exact parameters that went into simulating the data, we could
make sure that the models we were planning to use would be able to retrieve the
parameters we were looking for. This step can also help when interpreting the real
models later on as the simulated models can work as a guide with known effects.

3.9 Projection Predictive Feature Selection

As the first step in our analysis, we identify the variables that are best suited to
predict the outcomes that we want to analyze. This allows us to focus on building
and comparing models with those predictors and ignore predictors that seem to have
low explanatory power. Without this kind of feature selection, we would ideally try
every possible combination of predictors in our models to find the simplest model
with the best explanatory power. The process we use for this is projection predictive
feature selection proposed by Piironen et al. [25]. Figure 3.4 shows the plotted result
of the feature selection for a model predicting the EXAM for Linespots. It shows
the performance of models after step-wise including the next best predictor. For
this model, the proposed model size is 3 and the figure shows that adding more
predictors does not increase the explanatory power of the model. The plots for the
other outcome variables are in appendix Chapter B.

It is important to note that the current implementation of projpred does not support
beta distribution likelihoods. Instead, we used a gaussian likelihood, which may not

27

3. Methods

●

●

●

●
● ● ● ● ●

●

●

●

●
● ● ● ● ●

elpd
rm

se

0 2 4 6 8

−60

−40

−20

0

0.0000

0.0025

0.0050

0.0075

0.0100

Number of variables in the submodel

D
iff

er
en

ce
 to

 th
e

ba
se

lin
e

sigma

predictors5

predictors6

predictors3

(Intercept)

0.0 0.1 0.2

Figure 3.4: varsel_plot and mcmc_areas plot for EXAM prediction in RQ1 and
RQ2

28

3. Methods

be ideal given the nature of our data. However, we still used the results as a starting
point for our model building phase to reduce the time needed.

3.9.1 Prior Sensitivity Analysis

This is sometimes also called parameter sensitivity analysis.

The most common prior in Bayesian inference is the Gaussian. It is easy to work
with and if all we know about a distribution are the mean and variance, it is the
maximum entropy distribution. Maximum entropy means that it offers the highest
number of possibilities for the data to follow the distribution. As we use priors as
the starting point for our models, we don’t wont to push the models in unlikely
directions without good arguments to prevent unnecessary bias. In the case of both
the AUCEC and EXAM scores however, we can say more about their distributions
as we know their process of calculation. Both are limited between 0 and 1. We could
either add this prior knowledge by limiting a normal prior to between 0 and 1, or
we could instead use a beta distribution. The beta distribution is limited between 0
and 1 and often used to describe probabilities of probabilities or events which have
limited values. While both the AUCEC and EXAM score are not strictly speaking
probabilities, they both are connected to the idea of how likely it is to find faults
when following a ranked list and intuitively can be understood as the probability
that the highest-ranked lines contain all faults. For these reasons, we chose the beta
distribution as the likelihood for both the AUCEC and EXAM scores.

As for the different predictors, we will go with Gaussian priors as the maximum
entropy distributions for continuous variables. While the even wider student’s t
distribution has become a more popular default, primarily to allow for more extreme
cases in financial modelling, we argue that this is not necessary for the domain of
fault prediction at this point.

We then use prior sensitivity analysis to choose proper priors for our models. Figure
3.5a shows the result of very wide priors for our model. The steep curves are a
sign that our model would put a lot of weight on large effects, as a small change
in LOC would lead to a large difference in the EXAM score. Using this technique,
we can iteratively narrow the priors until their behaviour seems to match our prior
expectation. Figure 3.5b shows the impact of too narrow priors. As most curves
are almost horizontal over the parameter space, the estimated prior effect sizes are
extremely small.

Finally, Figure 3.6 shows how a good prior could look like. It allows for small and
large effects equally and does not put too much weight on either of both. While
there is a visible emphasis on the limits to the right side of the plot that is to be
expected for such large LOC values and will be hard to model better with a Gaussian
prior. As the idea of a prior is to include prior knowledge about the nature of the
data, without looking at the data itself, this process is not entirely systematic and
will depend on one’s experience with the domain.

29

3. Methods

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LOC

In
ve

rs
e

Lo
gi

t

(a) Curves for Normal(0, 10) priors

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LOC

In
ve

rs
e

Lo
gi

t

(b) Curves for Normal(0, 0.1) priors

Figure 3.5: Curves for a wide and a narrow prior

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LOC

In
ve

rs
e

Lo
gi

t

Figure 3.6: Curves for Normal(0, 0.5) priors

30

3. Methods

3.10 Model Design

Based on the proposed predictors we build several models of increased complexity
and compared their performance using state of the research Pareto smoothed im-
portance sampling leave one out cross-validation [34]. These ranged from models
that simply included one predictor up to the models that include all the predictors
that the feature selection proposed. We always start with the variable for which
we want to measure the effect, regardless of the proposed features. We then used
prior sensitivity analysis to evaluate the impact of different priors. These steps were
iterated back and forth multiple times until we chose the best performing models
for a final comparison and analysis.

3.10.1 Model Diagnostics

Before interpreting a model, one has to check if the Markov Chain Monte Carlo
sampling did work properly. The three most important diagnostics according to the
stan developers [33] are the number of effective samples (n_eff), the consistency
of multiple Markov chains quantified as R-hat (Rhat) and not having divergent
transitions. The Rhat should approach 1 from above and be no more than 1.01.
The threshold for n_eff is more dependent on what the purpose of the model is.
If one is only interested in mean values, very little samples are needed. McElreath
[23] proposes around 200 samples in this case. If one, however, is interested in the
behaviour of the posterior in the extremes, then many more samples are necessary
for this. For an approximately Gaussian posterior, McElreath [23] proposes 2000
samples. In the past, 0.1 of post warmup samples was used as a threshold for n_eff.
We will use this as it is more conservative in our case. Regardless of one’s goal,
a very low n_eff can be a sign for sampling problems and should be investigated.
McElreath [23] also proposes the visual inspection of the trace plots of the chains to
ensure they mix well and are neither stuck in one point nor swing too far out. The
desired shape should look like a “Hairy Caterpillar”.

3.10.2 Model Comparison

For our model comparison, we use the loo package (cite) and the loo() and loo_compare
functions. Table 3.2 shows the comparison of the EXAM models for research ques-
tion 1:

The three columns are the model name, models become more complex with a higher
index, the elpd difference to the best performing model and the standard error of the
difference. For a significant difference between two models, the difference should be
at least twice, but preferably four times the standard error. In this case, this means
that models 3 to 7 are almost indistinguishable in performance. Model 4 is right
on the edge so we might rule it out to reduce the number of models. We decided
to proceed with models 3, 5 and 7 as model 3 is the simplest model, model 7 is the

31

3. Methods

Table 3.2: loo_compare result for research question 1 EXAM models

elpd_diff se_diff
m1.5 0.0 0.0
m1.7 -0.2 0.2
m1.6 -0.2 0.4
m1.3 -0.9 1.7
m1.4 -1.0 0.5
m1.2 -241.3 16.0
m1.1 -278.8 17.1

most complex one and model 5 is the highest-ranked by the loo. While one would
usually go with the simplest model to prevent overfitting and sampling issues, we
want to compare the three models again after a final more thorough sampling.

3.10.3 Model Interpretation

Model interpretation is complex and there is no single correct way of doing it. A lot
of it depends on what one is interested in and wants to show. In our case, we are
interested in the differences in outcomes between different algorithms, time versions
or weighting functions. The brms package offers us to get posterior predictions from
a model, which we can use to get a distribution of differences between the variables
we want to analyze. To get the differences, we calculate the posterior predictions
based on the subsamples of our data that were created with the desired variable,
for example, all samples drawn from with the Linespots algorithm, using the google
weighting function. We can then subtract the posterior predictions from each other
to receive the differences. The result of the subtraction is an empirical distribution
of the absolute effect of moving from one weighting function to another. We can
then present the distribution itself together with descriptive statistics such as the
mean, median and confidence intervals.

32

4
Results

This chapter presents and describes the results of our experiments and analysis. For
an interpretation and discussion, see chapter Discussion. The sections are split into
the different Metrics we investigated for easier access. All model diagnostics are
shown in appendix D.

4.1 Exploration

The first thing we wanted to investigate is how similar the AUCECEXAM and
AUCECDENSITY results were. As discussed in Section 3.3.9 we noticed that there
are different ways to calculate the AUCEC metric which might differ. Figure 4.1
shows both versions side by side and it is obvious that they are not the same and
AUCECEXAM seems to be higher on average. This is also supported by higher mean
and median values for AUCECEXAM compared to AUCECDENSITY as shown in
Table 4.1. The distribution of AUCECDENSITY also seems wider and with a
stronger bimodal shape compared to AUCECEXAM that is closer to a Gaussian
shape. This matches the higher standard deviation of AUCECDENSITY displayed
in Table 4.1.

When comparing the AUCECEXAM and EXAM plots, they seem to be almost
perfectly mirrored at the y-axis. Both density plots have the same shape and the
with of the 95% intervals is roughly 0.3 for both. Another similarity is shown in
Figure 4.2b that shows a plot of EXAMF against hdMaxLOCEXAM which shows
a strong correlation between the two. This is expected, as the hit density will
be at its highest at the first predicted fault. EXAMF also is the lower limit for
hdMaxLOCEXAM, as hit density is 0 until at least the first fault is reached.

Finally, we compared results for Linespots between the different programming lan-
guages and domains in Figure 4.3. Starting with the languages, it seems that
JavaScript and C++ behave different from the rest of the languages but similar
to each other. The very small standard deviation of JavaScript is also notewor-
thy. The results for the domains are more similar to each other with only domain
45102020 (Data Processing & Outsourced Services) behaving notably better than
the rest.

33

4. Results

0

2

4

6

0.6 0.7 0.8 0.9
AUCECEXAM

de
ns

ity

with median, 2 sd interval

Density of AUCECEXAM

(a) AUCECEXAM

0

2

4

0.55 0.65 0.75 0.85
AUCECDENSITY

de
ns

ity

with median, 2 sd interval

Density of AUCECDENSITY

(b) AUCECDENSITY

Figure 4.1: Densities of AUCECEXAM and AUCECDENSITY with 2 SD
intervals

0

2

4

6

0.1 0.2 0.3 0.4
EXAM

de
ns

ity

with median, 2 sd interval

Density of EXAM

(a) EXAM with 2 SD intervals

●

●

●●●●

●

●●

●

●●

●

●

●

●

●●

●

●

●● ●●

●

●

●●
●●

●●
●●●●

●●

●●●●

●
●●● ●●

●●

●
●

●●
●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●●

●●

●
●

●●

●

●

●

●

●●

●●

●

● ●●

●

●
●

●

●●

●
●

●●
●●

●

●

●

●

●●

●●
●

●

●●

●

●

●
●

●●

●

●

●

●

●●

●

●

●●

●●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●●

●●

●●

●

●

●
●

●●

●●

●●

●●

●
●

●
●

●●

●●
●●

●●

●●

●

●

●●

●●

●●

●●

●●●●●●

●
●

●●

●●

●

●

●

●●●

●

●

●●

●●

●

●

●●
●●

●●

●●

●●

●
●

●

●

●●

●●

●
●

●●

●
●

●●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●●

●●

●●

●

●

●
●

●●

●●

●●

●●

●
●

●

●

●●

●

●

●
●

●●

●

●

●

●

●●

● ●

●
●

●●

●

●

●●

●●

●●

●

●
●●

●

●

●
●

●●

●●

●●

●●

●●

●●

●●

●

●
●●

●●

●●

●●

●●

●
●

●
●

●●

●●

●

●

●●

●● ●●

●●
● ● ●●

●●

1e−06

1e−04

1e−02

1e−06 1e−04 1e−02
EXAMF

hd
M

ax
LO

C
E

X
A

M

log scale, with y=X line

Correlation of EXAMF and hdMaxLOCEXAM

(b) EXAMF and hdMaxLOCEXAM
with diagonal on log scale

Figure 4.2: Density of EXAM and correlation of EXAMF and hdMaxLOCEXAM

34

4. Results

●●
●●
●●

●●
●●●●

0.1

0.2

0.3

Java C Python JS Ruby C++ PHP
Language

E
X

A
M

●●
●●●●

0.7

0.8

0.9

Java C Python JS Ruby C++ PHP
Language

A
U

C
E

C
E

X
A

M

(a) Language

●

●●

0.1

0.2

0.3

25502020 45103010 50202010 45103020 45102020 45102030
Domain

E
X

A
M

●●●●

●●

●●

●●

0.7

0.8

0.9

25502020 45103010 50202010 45103020 45102020 45102030
Domain

A
U

C
E

C
E

X
A

M

(b) Domain

Figure 4.3: EXAM and AUCECEXAM results for Linespots for different
Languages and Domains

-4 SD -2 SD Mean Median +2 SD +4 SD
EXAM 0 0.104 0.226 0.221 0.348 0.471
AUCECEXAM 0.481 0.623 0.779 0.785 0.928 1.0774
AUCECDENSITY 0.394 0.565 0.735 0.73 0.906 1.077
EXAM25 0 0 0.0278 0.0164 0.0891 0.15
EInspect25EXAM 0.394 0.565 0.735 0 0.906 1.077
EXAMF 0 0 0.00363 0.000472 0.0241 0.0445
hdMaxLOCEXAM 0 0 0.0154 0.000717 0.113 0.211

Table 4.1: Summary of exploration, rounded to 3 decimals or integer, 0 used as
lower limit

35

4. Results

4.2 Research Question 1

The first research question was: What kind of weighting function produces the best
results for Linespots?

4.2.1 EXAM Results

After the model building phase, we kept two models. The simpler one, Model
C.1, did not sample quite good enough, as shown in Figure D.1b. For this reason,
we created a more complex model that uses an additional varying intercept with
Model 4.1. While usually more complex models sample worse, the additional varying
intercept probably breaks up the parameter space which helps with sampling.

EXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βwWi + βlLi + γP roject[i] + δLanguage[i]

α ∼ Normal(0, 0.5)
βw, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
δj ∼ Normal(δ̄, ϵ)

γ̄, σ, δ̄, ϵ ∼ HalfCauchy(0, 0.1)
ϕ ∼ Gamma(0.1, 0.1)

Model 4.1: Final model for EXAM using Weighting

Both models have similar estimated values for the weighting functions as shown in
Table 4.2 but they differ in their estimations for the intercept. Here the more com-
plex model has more uncertainty. Table 4.3 shows the loo comparison between the
two models and they seem equivalent in that regard. As the effect of the weighting
functions depends partially on the intercept, due to the non-linear nature of the
inverse logit transformation, we use the more complex model for our analysis to
incorporate the higher uncertainty it has based on better sampling.

Moving to the results of Model 4.1, we start with the posterior distribution of
the weighting functions coefficients in Figure 4.4a. Both the linear and the flat
weighting functions have negative means but a high overlap with 0 in their posterior
distributions. As the posterior distributions are on the logit scale, it is hard to
interpret the effects on the outcome scale from the distributions alone. One way to
approach this is to look at the marginal effects shown in Figure 4.4b. It shows the
mean and 95% intervals for the EXAM scores predicted by Model 4.1 and split by
weighting-function. However, there are no clear differences between the marginal
effects of the weighting-functions.

36

4. Results

Model C.1 Estimate Est.Error Q2.5 Q97.5
Intercept -1.16 0.109 -1.36 -0.931
linear_weighting -0.00318 0.0221 -0.0466 0.0396
flat_weighting -0.00925 0.0221 -0.053 0.0341
LOC 0.218 0.0299 0.159 0.276
Model 4.1 Estimate Est.Error Q2.5 Q97.5
Intercept -1.09 0.242 -1.48 -0.511
linear_weighting -0.00307 0.022 -0.0464 0.0402
flat_weighting -0.0095 0.022 -0.0522 0.034
LOC 0.227 0.0304 0.168 0.287

Table 4.2: Fixed effects of models C.1 and 4.1 rounded to 3 significant digits

elpd_diff se_diff
Model 4.1 0.0 0.0
Model C.1 -0.5 0.3

Table 4.3: loo_compare output for models C.1 and 4.1

b_Weightingflat_weighting_function

b_Weightinglinear_weighting_function

−0.10 −0.05 0.00 0.05 0.10

with medians and 95% intervals

Posterior distributions

(a) Posteriors of the coefficients

● ● ●

0.20

0.25

0.30

0.35

google_weighting_function linear_weighting_function flat_weighting_function

Weighting

E
X

A
M

(b) Marginal effects of the weighting
functions with 95% intervals

Figure 4.4: Posteriors and marginal effects for the weighting functions in Model
4.1

37

4. Results

Finally, we can take a look at the differences between predictions on the outcome
scale as shown in Figure 4.5 and summarized in Table 4.4. These show the pairwise
contrasts between all three weighting functions and their distributions. All three
contrast distributions have medians close to 0 and the 95% intervals overlap 0 evenly.

0.0

2.5

5.0

7.5

−0.2 −0.1 0.0 0.1 0.2

Effect

de
ns

ity

with median, 2 and 4 sd intervals

Google − Linear Marginal Effect on EXAM

(a) Google - Linear

0.0

2.5

5.0

7.5

−0.2 −0.1 0.0 0.1 0.2

Effect

de
ns

ity

with median, 2 and 4 sd intervals

Google − Flat Marginal Effect on EXAM

(b) Google - Flat

0.0

2.5

5.0

7.5

−0.2 −0.1 0.0 0.1 0.2

Effect

de
ns

ity

with median, 2 and 4 sd intervals

Linear − Flat Marginal Effect on EXAM

(c) Linear - Flat

Figure 4.5: Contrasts between the different weighting functions based on
posterior predictions in Model 4.1

-4 SD -2 SD Median +2 SD +4 SD
Google - Linear -0.173 -0.0863 0.000543 0.0874 0.174
Google - Flat -0.172 -0.0851 0.00163 0.0884 0.175
Linear - Flat -0.172 -0.0856 0.00106 0.0878 0.174

Table 4.4: Contrast between weighting functions in Model 4.1 rounded to 3
significant digits

4.2.2 AUCECEXAM Results

As indicated in Section 4.1 the results for AUCECEXAM are very similar to the
ones using EXAM. For this reason, we only show the plots and tables here and refer
to the explanations in Section 4.2.1.

Model C.2 Estimate Est.Error Q2.5 Q97.5
Intercept 1.186 0.11 0.957 1.397
linear_weighting 0.00302 0.0223 -0.0406 0.0469
flat_weighting 0.00974 0.0225 -0.0344 0.0535
LOC -0.218 0.0304 -0.278 -0.159
Model 4.2 Estimate Est.Error Q2.5 Q97.5
Intercept 1.097 0.252 0.489 1.5
linear_weighting 0.00283 0.0223 -0.0404 0.0465
flat_weighting 0.00962 0.0223 -0.0337 0.0535
LOC -0.228 0.0308 -0.288 -0.168

Table 4.5: Fixed effects of models C.2 and 4.2 rounded to 3 significant digits

38

4. Results

AUCECEXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βwWi + βlLi + γP roject[i] + δLanguage[i]

α ∼ Normal(0, 0.5)
βw, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
δj ∼ Normal(δ̄, ϵ)

γ̄, σ, δ̄, ϵ ∼ HalfCauchy(0, 0.1)
ϕ ∼ Gamma(0.1, 0.1)

Model 4.2: Final model for AUCECEXAM using Weighting

elpd_diff se_diff
Model 4.2 0.0 0.0
Model C.2 -0.3 0.4

Table 4.6: loo_compare output for models C.2 and 4.2

b_Weightingflat_weighting_function

b_Weightinglinear_weighting_function

−0.10 −0.05 0.00 0.05 0.10

with medians and 95% intervals

Posterior distributions

(a) Posteriors of the coefficients

● ● ●

0.65

0.70

0.75

0.80

google_weighting_function linear_weighting_function flat_weighting_function

Weighting

A
U

C
E

C
E

X
A

M

(b) Marginal effects of the weighting
functions

Figure 4.6: Posteriors and marginal effects for the weighting functions in Model
4.2

-4 SD -2 SD Median +2 SD +4 SD
Google - Linear -0.173 -0.0867 -0.000512 0.0857 0.172
Google - Flat -0.174 -0.0878 -0.00164 0.0846 0.171
Linear - Flat -0.173 -0.0873 -0.00113 0.0849 0.171

Table 4.7: Contrast between weighting functions in Model 4.2 rounded to 3
significant digits

39

4. Results

0.0

2.5

5.0

7.5

−0.2 −0.1 0.0 0.1 0.2

Effect

de
ns

ity

with median, 2 and 4 sd intervals

Google − Linear Marginal Effect on AUCECEXAM

(a) Google - Linear

0.0

2.5

5.0

7.5

−0.2 −0.1 0.0 0.1 0.2

Effect

de
ns

ity

with median, 2 and 4 sd intervals

Google − Flat Marginal Effect on AUCECEXAM

(b) Google - Flat

0.0

2.5

5.0

7.5

−0.2 −0.1 0.0 0.1 0.2

Effect

de
ns

ity

with median, 2 and 4 sd intervals

Linear − Flat Marginal Effect on AUCECEXAM

(c) Linear - Flat

Figure 4.7: Contrasts between the different weighting functions based on
posterior predictions in Model 4.2

4.3 Research Question 2

The second research question was: How does index-based age calculation influence
the predictive performance of Linespots compared to time stamp based age calcu-
lation?

4.3.1 EXAM Results

After the model building phase, we kept two models. The simpler one, Model C.3,
did not sample quite good enough, as shown in Figure D.17b. For this reason,
we created a more complex model that uses an additional varying intercept with
Model 4.3. While usually more complex models sample worse, the additional varying
intercept probably breaks up the parameter space which helps with sampling.

EXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βtTi + βlLi + γP roject[i] + δLanguage[i]

α ∼ Normal(0, 0.5)
βt, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
δj ∼ Normal(δ̄, ϵ)

γ̄, σ, δ̄, ϵ ∼ HalfCauchy(0, 0.1)
ϕ ∼ Gamma(0.1, 0.1)

Model 4.3: More Complex model for EXAM using Time

Both models have similar estimated values for the time-versions as shown in Table
4.8 but they differ in their estimations for the intercept. Here the more complex
model has more uncertainty. Table 4.9 shows the loo comparison between the two

40

4. Results

models and they seem equivalent in that regard. As the effect of the time-versions
depends partially on the intercept, due to the non-linear nature of the inverse logit
transformation, we use the more complex model for our analysis to incorporate the
higher uncertainty it has based on better sampling.

Model C.3 Estimate Est.Error Q2.5 Q97.5
Intercept -1.2 0.11 -1.42 -0.983
Timecommit -0.000485 0.0182 -0.0366 0.035
LOC 0.219 0.0304 0.159 0.278
Model 4.3 Estimate Est.Error Q2.5 Q97.5
Intercept -1.09 0.243 -1.48 -0.502
Timecommit -0.000284 0.0181 -0.0355 0.0354
LOC 0.227 0.0304 0.168 0.287

Table 4.8: Fixed effects of models C.3 and 4.3 rounded to 3 significant digits

elpd_diff se_diff
Model 4.3 0.0 0.0
Model C.3 -0.2 0.3

Table 4.9: loo_compare output for models C.3 and 4.3

Moving to the results of Model 4.3, we start with the posterior distribution of the
commit time-version coefficient in Figure 4.8. The distribution has a negative mean
but almost indistinguishable from 0. The 95% intervals also evenly overlap with
0. To get a better picture for any effects on the outcome scale, we again use the
marginal effects shown in Figure 4.9a. It shows the mean and 95% intervals for the
EXAM scores predicted by Model 4.3 and split by weighting-function. Similar to
the weighting-functions, there is no clear difference between the marginal effects of
the time-versions.

Finally, we can take a look at the difference between predictions on the outcome
scale as shown in Figure 4.9b and summarized in Table 4.10. Similar to the marginal
effects, the contrast between both time-versions has a median close to 0 and an even
overlap with 0.

-4 SD -2 SD Median +2 SD +4 SD
Time - Commit -0.173 -0.0864 0.0000736 0.0866 0.173

Table 4.10: Contrast between time versions in Model 4.3 rounded to 3 significant
digits

41

4. Results

b_Timecommit

−0.08 −0.04 0.00 0.04 0.08

with medians and 95% intervals

Posterior distribution

Figure 4.8: Posteriors of the coefficients

● ●

0.20

0.25

0.30

0.35

time commit

Time

E
X

A
M

(a) Marginal effects of the time versions

0.0

2.5

5.0

7.5

−0.2 −0.1 0.0 0.1 0.2

Effect

de
ns

ity

with median, 2 and 4 sd intervals

Time − Commit Marginal Effect on EXAM

(b) Contrast between the time-versions
based on posterior predictions in Model

4.3

Figure 4.9: Posteriors and contrast between the different time versions based on
posterior predictions in Model 4.3

42

4. Results

4.3.2 AUCECEXAM Results

As indicated in Section 4.1 the results for AUCECEXAM are very similar to the
ones using EXAM. For this reason, we only show the plots and tables here and refer
to the explanations in Section 4.3.1.

AUCECEXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βtTi + βlLi + γP roject[i] + δLanguage[i]

α ∼ Normal(0, 0.5)
βt, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
δj ∼ Normal(δ̄, ϵ)

γ̄, σ, δ̄, ϵ ∼ HalfCauchy(0, 0.1)
ϕ ∼ Gamma(0.1, 0.1)

Model 4.4: More Complex model for AUCECEXAM using Time

Model C.4 Estimate Est.Error Q2.5 Q97.5
Intercept 1.19 0.11 0.971 1.4
Timecommit 0.000302 0.0182 -0.0355 0.0363
LOC -0.218 0.0306 -0.278 -0.159
Model 4.4 Estimate Est.Error Q2.5 Q97.5
Intercept 1.11 0.249 0.513 1.506
Timecommit 0.000309 0.0181 -0.0354 0.0358
LOC -0.228 0.0307 -0.288 -0.168

Table 4.11: Fixed effects of models Model C.4 and 4.4 rounded to 3 significant
digits

elpd_diff se_diff
Model 4.4 0.0 0.0
Model C.4 -0.4 0.4

Table 4.12: loo_compare output for models C.4 and 4.4

43

4. Results

b_Timecommit

−0.08 −0.04 0.00 0.04 0.08

with medians and 95% intervals

Posterior distribution

Figure 4.10: Posteriors of the coefficients

● ●

0.65

0.70

0.75

0.80

time commit

Time

A
U

C
E

C
E

X
A

M

(a) Marginal effects of the time versions

0.0

2.5

5.0

7.5

−0.2 −0.1 0.0 0.1 0.2

Effect

de
ns

ity

with median, 2 and 4 sd intervals

Time − Commit Marginal Effect on AUCECEXAM

(b) Contrast between the time-versions
based on posterior predictions in Model

4.4

Figure 4.11: Posteriors and contrast between the different time versions based on
posterior predictions in Model 4.4

-4 SD -2 SD Median +2 SD +4 SD
Time - Commit -0.172 -0.086 -0.0000546 0.0859 0.172

Table 4.13: Contrast between time versions in Model 4.4 rounded to 3 significant
digits

44

4. Results

4.4 Research Question 3

The third research question was: What is a good cut-off-point to turn Linespots into
a classifier? For this question, we explore the behaviour of Linespots at different
LOC percentages.

Starting with hdMaxLOCEXAM and EXAMF in Figure 4.12, both have a similar
shape. As discussed in Section 4.1 they are strongly correlated and EXAMF repre-
sents a lower limit to hdMaxLOCEXAM, which is supported by their summary in
Table 4.14.

0

200

400

600

0.000 0.025 0.050 0.075
hdMaxLOCEXAM

de
ns

ity

with median, 2 sd interval

Density of hdMaxLOCEXAM

0

250

500

750

1000

0.0000 0.0025 0.0050 0.0075 0.0100
hdMaxLOCEXAM

de
ns

ity

with median, zoomed x−axis

Density of hdMaxLOCEXAM

(a) hdMaxLOCEXAM

0

300

600

900

0.00 0.01 0.02
EXAMF

de
ns

ity

with median, 4 sd x−axis

Density of EXAMF

0

500

1000

1500

2000

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025
EXAMF

de
ns

ity

with median, zoomed x−axis

Density of EXAMF

(b) EXAMF

Figure 4.12: Densities of hdMaxLOCEXAM and EXAMF for Linespots samples

In addition to those lower limit measures, we also measured what proportion of lines
had to be inspected to find the first 25% of faults with EXAM25 as shown in Figure
4.13a and the precision and recall when using a 5% LOC cut-off point as shown in
Figure 4.13b.

-2 SD Mean Median +2 SD +4 SD
EXAMF 0 0.00212 0.000197 0.0148 0.0275
hdMaxLOCEXAM 0 0.0101 0.000385 0.0926 0.175
EXAM25 0 0.0202 0.0127 0.065 0.11
Precision@5%LOC 0 0.0149 0.00591 0.0739 0.133
Recall@5%LOC 0 0.12 0.105 0.271 0.423

Table 4.14: Mean, Median, 2 and 4 standard deviation intervals for the Linespots
sample

45

4. Results

0

10

20

30

40

0.00 0.05 0.10
EXAM25

de
ns

ity

with median, 2 sd interval

Density of EXAM25

(a) EXAM25

0

20

40

60

0.0 0.1 0.2
precision

de
ns

ity

with median, 2 sd interval

Density of Precision at 5% LOC cut−off

0

2

4

6

0.0 0.1 0.2 0.3
recall

de
ns

ity

with median, 2 sd interval

Density of Recall at 5% LOC cut−off

(b) Precision and Recall for 5% LOC
cut-off

Figure 4.13: EXAM25, precision and recall densities for Linespots samples

4.5 Research Question 4

The fourth research question was: What is the prediction performance of Linespots
compared to Bugspots?

4.5.1 EXAM Results

After the model building phase, we kept two models. The simpler one, Model C.5,
did not sample quite good enough, as shown in Figure D.33b. For this reason,
we created a more complex model that uses an additional varying intercept with
Model 4.5. While usually more complex models sample worse, the additional varying
intercept probably breaks up the parameter space which helps with sampling.

Both models have similar estimated values for Bugspots as shown in Table 4.15 but
they differ in their estimations for the intercept. Here the more complex model has
more uncertainty. Table 4.16 shows the loo comparison between the two models and
they seem equivalent in that regard. As the effect of Bugspots depends partially on
the intercept, due to the non-linear nature of the inverse logit transformation, we
use the more complex model for our analysis to incorporate the higher uncertainty
it has based on better sampling.

Moving to the results of Model 4.5, we start with the posterior distribution of the
Bugspots coefficient in Figure 4.14. The distribution has a clear negative mean but
the 95% intervals still overlap with 0. This effect is again hard to interpret as it is
on the logit scale.

46

4. Results

EXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βaAi + βlLi + γP roject[i] + δLanguage[i]

α ∼ Normal(0, 0.5)
βa, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
δj ∼ Normal(δ̄, ϵ)

γ̄, σ, δ̄, ϵ ∼ HalfCauchy(0, 0.1)
ϕ ∼ Gamma(0.1, 0.1)

Model 4.5: More Complex model for EXAM using Algorithm

Model C.5 Estimate Est.Error Q2.5 Q97.5
Intercept -1.16 0.0951 -1.35 -0.969
Bugspots -0.0214 0.0199 -0.0607 0.0175
LOC 0.043 0.0322 -0.0203 0.106
4.5 Estimate Est.Error Q2.5 Q97.5
Intercept -1.16 0.157 -1.44 -0.809
Bugspots -0.0217 0.0198 -0.0604 0.0173
LOC 0.0481 0.0325 -0.0156 0.112

Table 4.15: Fixed effects of models C.5 and 4.5 rounded to 3 significant digits

elpd_diff se_diff
Model 4.5 0.0 0.0
Model C.5 -0.2 0.3

Table 4.16: loo_compare output for models C.5 and 4.5

47

4. Results

b_AlgorithmBugspots

−0.10 −0.05 0.00 0.05

with medians and 95% intervals

Posterior distribution

Figure 4.14: Posteriors of Bugspots

To get a better picture for any effects on the outcome scale, we again use the marginal
effects shown in Figure 4.15a. It shows the mean and 95% intervals for the EXAM
scores predicted by Model 4.5 and split by Algorithm. While the difference is not
very big, both the mean and the 95% intervals are lower for Bugspots compared
to Linespots. The y-axis scale, however, is very small, so any difference will be
small as well. Finally, we can take a look at the difference between predictions on
the outcome scale as shown in Figure 4.15b and summarized in Table 4.17. The
contrast shows that the difference is very small and overlaps with 0.

-4 SD -2 SD Mean +2 SD +4 SD
Linespots - Bugspots -0.263 -0.13 0.00372 0.137 0.271

Table 4.17: Contrast between algorithms in Model 4.5 rounded to 3 significant
digits

48

4. Results

●
●

0.21

0.24

0.27

0.30

Linespots Bugspots

Algorithm

E
X

A
M

(a) Marginal effects of Bugspots and
Linespots

0

2

4

6

−0.4 −0.2 0.0 0.2 0.4

Effect
de

ns
ity

with median, 2 and 4 sd intervals

Linespots − Bugspots Marginal Effect on EXAM

(b) Linespots - Bugspots

Figure 4.15: Marginal effects and contrast based on posterior predictions for
both algorithms in Model 4.5

4.5.2 AUCECEXAM Results

As indicated in Section 4.1 the results for AUCECEXAM are very similar to the
ones using EXAM. For this reason, we only show the plots and tables here and refer
to the explanations in Section 4.3.1.

AUCECEXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βaAi + βlLi + γP roject[i] + δLanguage[i]

α ∼ Normal(0, 0.5)
βa, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
δj ∼ Normal(δ̄, ϵ)

γ̄, σ, δ̄, ϵ ∼ HalfCauchy(0, 0.1)
ϕ ∼ Gamma(0.1, 0.1)

Model 4.6: More Complex model for AUCECEXAM using Algorithm

49

4. Results

Model C.6 Estimate Est.Error Q2.5 Q97.5
Intercept 1.2 0.0955 1 1.38
Bugspots 0.0253 0.0202 -0.0145 0.0651
LOC -0.0384 0.033 -0.103 0.0266
Model 4.6 Estimate Est.Error Q2.5 Q97.5
Intercept 1.19 0.166 0.802 1.47
Bugspots 0.0254 0.0201 -0.014 0.0647
LOC -0.0434 0.0329 -0.108 0.0206

Table 4.18: Fixed effects of models C.6 and 4.6 rounded to 3 significant digits

elpd_diff se_diff
Model 4.6 0.0 0.0
Model C.6 -0.3 0.3

Table 4.19: loo_compare output for models C.6 and 4.6

b_AlgorithmBugspots

−0.05 0.00 0.05 0.10

with medians and 95% intervals

Posterior distribution

Figure 4.16: Posteriors of Bugspots

-4 SD -2 SD Median +2 SD +4 SD
Linespots - Bugspots -0.271 -0.138 -0.00428 0.129 0.263

Table 4.20: Contrast between algorithms in Model 4.6 rounded to 3 significant
digits

50

4. Results

●
●

0.72

0.76

0.80

Linespots Bugspots
Algorithm

A
U

C
E

C
E

X
A

M

(a) Marginal effects of Bugspots and
Linespots

0

2

4

6

−0.4 −0.2 0.0 0.2 0.4
Effect

de
ns

ity

with median, 2 and 4 sd intervals

Linespots − Bugspots Marginal Effect on aucec

(b) Linespots - Bugspots

Figure 4.17: Marginal effects and contrast based on posterior predictions for
both algorithms in Model 4.6

4.5.3 RQ4: EXAM25 Results

The model building process for the EXAM25 models was done with less rigour
compared to the EXAM and AUCECEXAM models so we only present the final
model here. The full code is available together with the rest of the analysis [32].
We ended up using the same model structure as for EXAM and AUCECEXAM for
sampling reasons as shown in Model 4.7.

EXAM25i ∼ Beta(µi, ϕ)
logit(µi) = α + βaAi + βlLi + γP roject[i]

α ∼ Normal(0, 0.5)
βa, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
γ̄, σ ∼ HalfCauchy(0, 0.1)

ϕ ∼ Gamma(0.1, 0.1)

Model 4.7: Model for EXAM using Algorithm

We start with the posterior distribution summarized in Table 4.21. The posterior
of the Bugspots coefficient in Figure 4.18 shows a positive effect on the logit scale
as the entire probability mass is positive.

Moving to the outcome scale to better understand the effects, we again use the
marginal effects shown in Figure 4.19a. It shows the mean and 95% intervals for

51

4. Results

Model 4.7 Estimate Est.Error Q2.5 Q97.5
Intercept -0.858 0.572 -2 0.217
Bugspots 0.459 0.045 0.371 0.547
LOC -0.114 0.0812 -0.273 0.0427

Table 4.21: Fixed effects of Model 4.7 rounded to 3 significant digits

b_AlgorithmBugspots

0.3 0.4 0.5 0.6

with medians and 95% intervals

Posterior distribution

Figure 4.18: Posteriors of Bugspots

52

4. Results

the EXAM25 scores predicted by Model 4.7 and split by Algorithm. This time the
difference in means is around 0.1 which is quite a lot in terms of EXAM25, as it
would indicate 10% fewer lines of code needed to find the first 25% of faults using
Linespots. However, the 95% intervals are still overlapping a lot. Finally, we can
take a look at the difference between predictions on the outcome scale as shown in
Figure 4.19b and summarized in Table 4.22. While the contrast between Bugspots
and Linespots is the biggest difference we have found so far, the 95% intervals still
overlap with 0 so it is still reasonable to expect Bugspots to perform better here.

●

●

0.1

0.2

0.3

0.4

0.5

0.6

Linespots Bugspots
Algorithm

E
X

A
M

25

(a) Marginal effects of Bugspots and
Linespots

0

10

20

−0.2 −0.1 0.0 0.1 0.2
Effect

de
ns

ity

with median, 2 and 4 sd intervals

Linespots − Bugspots Marginal Effect on EXAM25

(b) Linespots - Bugspots

Figure 4.19: Marginal effects and contrast for both algorithms based on posterior
predictions in in Model 4.7

-4 SD -2 SD Mean +2 SD +4 SD
Linespots - Bugspots -0.118 -0.0652 -0.0122 0.0407 0.0936

Table 4.22: Contrast between algorithms in Model 4.7 rounded to 3 significant
digits

4.5.4 RQ4: EInspect25EXAM Results

The model building process for the EInspect25EXAM models was done with less
rigour compared to the EXAM and AUCECEXAM models so we only present the
final Model 4.8 here.

We start with the posterior distribution summarized in Table 4.23. The posterior
of the Bugspots coefficient in Figure 4.18 shows a negative effect on the logit scale
as the entire probability mass is positive.

53

4. Results

EInspect25EXAMi ∼ Poisson(µi)
log(µi) = α + βaAi + βlLi + γP roject[i] + δLanguage[i]

α ∼ Normal(0, 0.5)
βa, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
δj ∼ Normal(δ̄, ϵ)

γ̄, σ, δ̄, ϵ ∼ HalfCauchy(0, 0.1)

Model 4.8: More Complex model for AUCECEXAM using Algorithm

Model 4.8 Estimate Est.Error Q2.5 Q97.5
Intercept -0.215 0.536 -1.26 0.847
Bugspots -1.02 0.194 -1.41 -0.644
LOC -0.805 0.236 -1.3 -0.371

Table 4.23: Fixed effects of Model 4.8 rounded to 3 significant digits

b_AlgorithmBugspots

−2.0 −1.5 −1.0 −0.5

with medians and 95% intervals

Posterior distribution

Figure 4.20: Posteriors of Bugspots

54

4. Results

Moving to the outcome scale to better understand the effects, we again use the
marginal effects shown in Figure 4.21a. It shows the mean and 95% intervals for the
EInspect25EXAM scores predicted by Model 4.8 and split by Algorithm. For EIn-
spect25EXAM both the means and 95% intervals differ a lot between Bugspots and
Linespots. Both indicate a higher EInspect25EXAM score for Linespots. Finally,
we can take a look at the difference between predictions on the outcome scale as
shown in Figure 4.21b and summarized in Table 4.24. Here it is important to note
that the y-axis is on the log scale, which might make a comparison hard on first
glance. However, an easy way to read the plot would be to pairwise compare the
height of the bars on the positive and negative side, which shows a higher number of
positive contrasts than negative ones. The summary in Table 4.24 might be easier
to read and that while again, the difference between Bugspots and Linespots is not
reliable, the chance of Linespots outperforming Bugspots is higher compared to the
reverse.

●

●

0.0

0.5

1.0

1.5

2.0

Linespots Bugspots
Algorithm

E
In

sp
ec

t2
5E

X
A

M

(a) Marginal effects of Bugspots and
Linespots

1e+01

1e+03

1e+05

1e+07

−5 0 5 10
Effect

co
un

t
with median, on log scale

Linespots − Bugspots Marginal Effect on EInspect25EXAM

(b) Linespots - Bugspots

Figure 4.21: Marginal effects and contrast based on posterior predictions for
both algorithms in Model 4.8

-4 SD -2 SD Mean +2 SD +4 SD
Linespots - Bugspots -2.24 -1.05 0.145 1.34 2.53

Table 4.24

4.6 Research Question 5

The fifth research question was: Do Bugspots and Linespots predict faults in the
same order?

55

4. Results

For research question 5 we calculated the mean absolute rank difference of faults
for each sample pair as shown in Figure 4.22. The results are summarized in Table
4.25. One way to interpret these numbers is that the mean distance between a
fault’s rank in the Bugspots and Linespots list is 27.5 slots. It is important to note
here that a single fault that changes rank between the lists will automatically lead
to subsequent faults to also be off by at least 1 rank which probably inflates this
score.

0.00

0.01

0.02

0.03

0 20 40 60 80
MRD

de
ns

ity

with median, 2 sd interval

Density of MRD

Figure 4.22: Mean absolute rank difference of faults between Bugspots and
Linespots

-4 SD -2 SD Mean Median +2 SD +4 SD
MRD 0 0 27.5 23.7 62.2 97

Table 4.25: Mean, Median, 2 and 4 SD Intervals rounded to 3 significant digits or
integers

56

5
Discussion

In this chapter we will discuss the implications and possible causes of the findings
from Chapter 4 as well as possible threats to validity and limitations and proposals
for future work. The chapter is divided into the different research questions, threats
and future work to allow easier navigation.

5.1 What kind of weighting function produces the
best results for Linespots?

For research question 1 we compared the impact of the three different weighting
functions proposed in Section 2.3.1 on the performance of Linespots.

Both the EXAM and the AUCECEXAM results in Section 4.2 show no clear positive
or negative effect for any of the weighting functions, neither on the logit nor on the
outcome scale. While the Google-weighting-function has the best mean and median
results, we can expect either of the three weighting functions to outperform any
other by around 0.086 for both EXAM and AUCECEXAM, based on the 2 standard
deviation intervals in tables 4.4 and 4.7.

This finding does not match the experience described by Lewis et al. [15], however,
this could be due to multiple reasons. One possible explanation for the lack of
an effect is the depth we used in this experiment. It is possible that the effect of
different weighting functions becomes more obvious when using a more commits for
the analysis, eg, when using the entire commit history of a project. This would add
older commits to the analysis that are less relevant to the present and could profit
from having less impact on the results. Lewis et al. [15] did not specify what depth
they used in their experiments and only gave a 6 to 8 month window until commits
“become inconsequential” [15]. The Bugspots reference implementation [28], it only
uses a depth of 500 commits in contrast to the 2000 commits we use. If we assumed
this to be the depth that Lewis et al. [15] used the effect of weighting-functions
should still be more pronounced for larger depth parameters.

Finally, there could be an interaction or masking effect at work that we have not
controlled for in our models.

In summary, it can be stated that there is no reliable difference in EXAM and

57

5. Discussion

AUCECEXAM performance between the different weighting-functions in our sam-
ple. And while we do recommend the usage of the Google-weighting-function, this
is due to the experience of Lewis et al. [15] and a very small mean improvement
over the other two, as well as our intuitive agreement with the arguments for an
exponential weighting function.

There is no reliable difference in EXAM and AUCECEXAM per-
formance between the different weighting-functions for Linespots in
our Sample.

5.2 How does index-based age calculation influ-
ence the predictive performance of Linespots
compared to time stamp based age calcula-
tion?

For research question 2 we compared the impact of the two different time-versions
proposed in Section 2.3.2 on the performance of Linespots.

Both the EXAM and the AUCECEXAM results in Section 4.3 show no clear positive
or negative effect for both time-versions, neither on the logit nor on the outcome
scale. While the commit based time-version has a slightly better mean and median
marginal effects, the contrast is too small to be relevant. And as with the weighting-
functions, we can expect either time-version to outperform the other by around 0.086
for both EXAM and AUCECEXAM, based on the 2 standard deviation intervals in
tables 4.10 and 4.13.

After not finding an effect for different weighting-functions, this finding is almost
expected. We would expect differences in relative commit age calculation to only
have a small effect compared to the difference between a flat and an exponential
weighting function. And as the time-versions mainly influence how the weighting-
functions work, it follows our intuition that they would not influence the performance
if the weighting-functions themselves do not influence the performance.

Besides the performance of Linespots, there is however an advantage to the index-
based age calculation when implementing the algorithm, as it does not suffer from the
problems that the non-linear history of git poses for the time-based age calculation.
As the age of commits does not grow monotonically, one has to care for edge cases.
And with our results pointing to no performance gains from any of the two, we do
recommend the usage of the index-based age calculation in the future.

In summary, it can be said that there is no reliable difference between the two
time-versions in regards to EXAM and AUCECEXAM performance, we do however
recommend the usage of the index-based age calculation as it is easier to implement.

There is no reliable difference in EXAM and AUCECEXAM perfor-
mance between the two time-versions for Linespots in our Sample.

58

5. Discussion

5.3 What is a good cut-off-point to turn Linespots
into a classifier?

For research question 3 we analyzed Linespots’ behaviour at different interesting
points to find guidelines for how to choose a good cut-off point to turn Linespots
into a classifier.

There is no clear answer to this question by nature, as it depends on the needs
of the user of the classifier. Depending on the chosen cut-off point the resulting
performance metrics will differ and it is up to the user to choose which ones are
most important.

We split the choice for a cut-off point into two parts. The first part is the choice
of a lower limit under which we expect Linespots not to offer any faults as part of
the result list. The second part is an analysis of Linespots behaviour at different
possible cut-off points.

Starting with the lower limit, we look at both the EXAMF and hdMaxLOCEXAM
results in Figure 4.12. Using the standard deviation intervals as a guide, using 1.48%
LOC to leave us with an approximate 97.5% chance to have at least one fault in our
faulty class. This is probably a good starting point for most use cases and depending
on how well a project works with Linespots, this could potentially be lowered by
two orders of magnitude or more.

Moving from the lower limit to a more optimal point that gives a better ratio of
value to effort, we can use both the hdMaxLOCEXAM as the highest ratio of found
faults per predicted line and the EXAM25 as the percentage of LOC needed to
find the first 25% of faults. The median of hdMaxLOCEXAM at 0.0385% LOC is
not too far from the median of EXAMF and thus could lead to a high number of
useless classifications without a single hit. Using the 2 standard deviation interval
for hdMaxLOCEXAM would result in a cut-off at 9.26% LOC to include the point
of highest efficiency in your classifier. This, however, does not seem useful as the
point of highest efficiency is only useful if we can reliably get very close to it. The
high standard deviation for hdMaxLOCEXAM makes that hard to achieve. Instead,
we can look at EXAM25 and use the 2 standard deviation interval at 6.5% LOC to
find 25% of faults in approximately 97.5% of classifier runs. This 6.5% cut-off point
is also rather close to the 5% used by, among others, Arisholm et al. [7].

Finally, we present the precision and recall at 5% LOC in Figure 4.13b and Table
4.14. These numbers are not impressive and indicate a high number of false positives
and false negatives.

Ultimately, the performance requirements of a classifier have to be estimated by each
user and we did not expect to be able to give any definitive answer to this question. If
one were to ask us for default cut-off point recommendation, we would suggest below
5%LOC as it lies in the range between EXAMF, EXAM25 and hdMaxLOCEXAM
for most projects. However, we discourage users from using Linespots as a sole
classifier in practice. It is rather suited as a baseline when comparing other fault

59

5. Discussion

prediction or fault localization algorithms, or as part of an ensemble of algorithms
that work together.

We discourage users from using Linespots as a sole classifier in
practice due to the bad performance.

5.4 What is the prediction performance of Linespots
compared to Bugspots?

For the fourth research question, we compared the predictive performance of Bugspots
and Linespots.

Starting with the EXAM and AUCECEXAM results, both of which are types of
averaging metrics, we see stronger differences than we have seen for the weighting-
functions and time-versions. While the posterior distributions for Bugspots in figures
4.14 and 4.16 put most of the weight on the negative side, there is still overlap with
0 and when moving to the outcome scale, there is only a very small difference left.
While Bugspots’ mean and median performance is slightly better than Linespots’
the difference is not reliable and very small.

These findings are initially counter-intuitive as they both run against our preliminary
findings in the past [18] as well as our argumentations for the theoretical benefits
of Linespots over Bugspots. We do however have a theory for the cause of these
results and why they seem to contradict past findings.

First, it is important to note that in our past work, we used the AUCECDENSITY
version of cost-effectiveness instead of AUCECEXAM. While we expect them to
behave similarly, they do not behave the same, as shown in Section 4.1. Second,
we did not use the full AUCEC in the past, but instead the AUCEC at 5% LOC
or AUCEC5. This emphasizes the early parts of the result list. While we do not
expect the difference between the AUCECDENSITY and AUCECEXAM measures
to result in such different results, the difference between the averaging style of the
AUCECEXAM used here and the AUCEC5 used in our past work does have the
potential to cause this.

The reason for the different behaviour between Bugspots and Linespots could stem
from the difference in their granularity and how the EXAM score is calculated. Both
algorithms produce a ranked list of elements for both of them, a large number of
elements at the end of the list will have the score 0 as they either have never been
part of a fix inducing commit or they never were modified during the length of the
depth parameter used at all. Due to the finer granularity of Linespots, this part of
the list with score 0 will be bigger. If we were to assume that Linespots performs
better for the early parts of the result list than Bugspots, this could, in theory, be
countered by a better performance of Bugspots in the later part, as both the AUCEC
and EXAM metrics average across all faults. As the EXAM score, and thus also the
AUCECEXAM, assumes random ordering of lines with the same score, faults with

60

5. Discussion

only 0 line scores get rather high Einspect scores. This is because they are assumed
to be randomly encountered anywhere in the block with score 0. As Bugspots has
more lines with a score above 0 than Linespots, any fault that is encountered in
those extra lines has a much lower Einspect value than if it were in the last block.
To clarify the performance of both algorithms in the early parts of the result list,
we also analyze their performance with the EXAM25 and the EInspect25EXAM
metrics.

Starting with the EXAM25 results, we have a positive effect for Bugspots on the
logit scale as shown in Figure 4.18. When moving to the outcome scale that effect
is not as pronounced any more, probably due to the inverse logit transformation
that includes the intercept of the model. And while the means and 95% intervals
between the two algorithms are offset, the 95% intervals do overlap and the contrast
does overlap 0 substantially. When choosing between the two, however, Linespots
does produce better mean and median EXAM25 results. It is also important to
note that the median EXAM25 score for both Bugspots and Linespots is 0.0164 so
while the contrast might seem small, the mean of -0.0122 is rather big in relation.
The EInspect25EXAM results follow right in those tracks and show a clear negative
effect for Bugspots on the logit scale and a less reliable effect on the outcome scale.
So while the 95% intervals overlap 0, Linespots does outperform Bugspots in both
mean and median EInspect25EXAM.

Both the EXAM25 and the EInspect25EXAM results support the idea that Linespots
performs better during the earlier parts of the result list than Bugspots. This also
follows our line of reasoning that Linespots performs better for the early stages of
the list but Bugspots performs better for the later stages due to a smaller 0 score
block.

Combined we interpret the results such that Linespots does not offer improvements
over Bugspots across all faults but does perform very similar to it on average. But
when considering only the first parts of the result list, Linespots does seem to out-
perform Bugspots on average, which would be an improvement based on the finding
of Parnin and Orso [11] that programmers only consider a small number of early
entries in a ranked list.

Linespots outperforms Bugspots for metrics that focus on early
parts of the result list. For averaging metrics, both perform similar
with a small lead for Bugspots.

5.5 Do Bugspots and Linespots predict faults in
the same order?

For the fifth research question, we investigated if the order of the predicted faults is
the same for Bugspots and Linespots.

Based on our results, the order is not the same for the two which was expected. We
assume that this is due to the same reason that both algorithms perform differently

61

5. Discussion

when compared with EXAM and EXAM25 as discussed in Section 5.4. As Bugspots
has a lower granularity, it casts a wider net so to say and scores lines that Linespots
does not score. This will inevitably lead to different rankings of lines in the project
and thus to different rankings of predicted faults.

This difference might make it possible, to improve the performance of the simple
past fault approach further by combining different granularities and utilizing their
strengths.

Bugspots and Linespots usually do not predict faults in the same
order.

5.6 Other Observations

In this section, we collect other noteworthy observations that do not fit any research
question directly.

5.6.1 Language and Domain Differences

While we did not do a thorough analysis of the differences between programming
languages and domains in regards to Linespots’ performance, the boxplots in Figure
4.3 show that there could be both programming languages and domains that work
better with Linespots. It is important to note here that our sample size is far too
small to draw any strong conclusions from this alone. It is, however, indicative
that JavaScript and C++, as well as projects in the data processing & outsourced
services domain, do for some reason work exceedingly well Linespots.

Looking at Table 3.1 we can see that there is some overlap between the projects
using JavaScript and C++ and the project in the data processing & outsourced
services domain. So the better performance of those languages and domain could
just be due to the better performance of those few projects.

5.7 Threats to Validity and Limitations

5.7.1 Faults in the Implementation

It has happened before that a paper is retracted due to bugs in the implementation
of some algorithm or analysis [16] so it is a valid critique of this thesis as well to ask
if the results, and thus the drawn conclusions, are based on a faulty implementation.
As our code has not been formally verified, nor has it undergone an exhaustive review
and audit process, we can not say with certainty that it does not contain faults. The
code is also not fully tested, which could be have been used as an argument for its
reliability.

62

5. Discussion

However, we are confident that our long experience with the algorithm and through-
out the course of multiple implementations, each improving on the past ones, we
have reduced the number of faults compared to past works [18]. We also have the
work of Zou et al. [26] to compare our Bugspots results against. While Zou et al. [26]
report an EXAM score of 0.465 for Bugspots, our results for the commons-math,
closure-compiler and jfreechar projects have a mean of 0.295 and median of 0.274
with a standard deviation of 0.0496. While Zou et al. [26]’s result is outside of our
95% interval, we have used a depth of 2000 while Zou et al. [26] have used the default
of 500. As we found both Bugspots and Linespots to perform better as argued in
Section 3.6.4, this difference in depth could explain the difference in performance.
We also only used the commit message identification as explained in Section 2.2.1
while Zou et al. [26] used a predefined set of known faults. As the identification
through commit message is not a perfect process, this is prone to result in differ-
ent sets of faults, which will influence the results. We can not say, however if this
would increase or decrease our performance compared to Zou et al. [26]. Based on
these arguments and our experience in the field, we argue that our approach is in
line with the common process of developing implementations in the wider field of
software engineering. And while not optimal, we think that this approach is reliable
enough to trust the results in the given circumstances.

5.7.2 Training on Evaluation Data

While developing the implementation for Linespots we ran into multiple corner cases
that we only encountered with a single project. One could argue that by running the
algorithm on one such a project and improving it based on the result we received, we
tuned the algorithm to perform better on said project and thus effectively trained
the algorithm on our evaluation data.

As we had to implement Linespots ourselves and use Git, which is anything but
simple, we were prone to encounter bugs and corner cases along the way. To reduce
the risk of biasing our results by optimizing for the projects we had, we made sure
not to analyze the performance of Linespots before the implementation did return
valid results from all projects. We also chose the larger projects with more commits
for the test runs, so that there was less of a chance to use the same commits in the
final evaluation that we also used for testing during development. Finally, we chose
the commits that were analyzed for the final evaluation randomly, to reduce the risk
of bias by choosing the commits ourselves.

5.7.3 Sourcing of Training and Validation Data

Another possible critique for our process of data gathering is the fact that we use
the same algorithm to identify fix inducing commits for the training data, the depth
commits that Linespots analyses, as well as the validation data, the pseudo future
we use to find future fixes. As mentioned in Section 2.2.1 the process of identifying
fix inducing commits based on their commit message is not ideal. In addition to

63

5. Discussion

0.1

0.2

0.3

Author Past Random
Source

E
X

A
M

Linespots EXAM performence by Source

0.1

0.2

0.3

0.4

Author Past Random
Source

E
X

A
M

Bugspots EXAM performence by Source

(a) Source

●●

●●

0.1

0.2

0.3

Random Author
Choice

E
X

A
M

Linespots EXAM performence by Choice

0.1

0.2

0.3

0.4

Random Author
Choice

E
X

A
M

Bugspots EXAM performence by Choice

(b) Choice

Figure 5.1: Influence of Source and Choice on EXAM results for Bugspots and
Linespots

that, the fact that we use the same process to gather both the predictions and the
supposed truth might bias our results even further. We acknowledge this restriction
and want to specify that our results only indicate the predictive power of those
commits that were identified via their commit message and not to all possible faults.
We propose some improvements to this situation in the future work section.

5.7.4 Impact of Source and Choice

Figures 5.1a and 5.1b show the EXAM results for the different sources and choices
explained in Section 3.4.3. We argue that the differences between sources and choices
across algorithms is small and thus does not weaken our conclusions.

5.7.5 GitHub as Data Source

The choice of GitHub as the source for all our project brings two limitations with
it. First, all projects that we analyzed use git, which could skew the collected data.
However, Git seems to be the most used version control system [36], [40] and thus
the results of this thesis should apply to the majority of projects. Second, with
other git hosting services like Gitlab or Bitbucket available, our choice of focusing
on Github again could limit the generalizability of this thesis. We argue, that our
sample size and spread across domains and programming languages minimizes this
problem. Furthermore, our inclusion of randomly chosen projects reduces potential
bias in our dataset.

64

5. Discussion

5.7.6 Bad Smells

In this section we will shortly address some of the bad smells identified by Menzies
and Shepperd [24].

Not Using Related Work: We based both the development of Linespots itself as
well as the methods we used on past work in the field of fault detection as referenced
throughout the background and method sections.

Using Deprecated and Suspect Data: We build a new dataset based on projects
used in past work, random projects from Github and projects that are well known
in their respective communities. We documented the process of how we build the
dataset in Section 3.4 and analyzed the impact of different sources and choices in
Section 5.7.4.

Inadequate Reporting: We report all gathered results that we saw as related
to the research questions and otherwise noteworthy. In addition to that, both the
Linespots and evaluation suite implementations are openly accessible [39] as well as
the R code used for the analysis [32].

Not Exploring Stability: We conducted a prior sensitivity analysis for our models
as explained in Section 3.9.1.

Not Exploring Simplicity: We compared models of different complexity in our
analysis and argued for the choice of our models based on their loo performance and
sampling behavior.

5.8 Future Work

5.8.1 Standard Evaluation Suite

Not only has the evaluation suite that we built for this thesis saved a lot of manual
labour but it also allows for the reproduction of our results with one script. To
prevent every researcher from having to build their own evaluation suite, an effort
to build a standard evaluation suite for fault prediction algorithms could greatly
improve the comparability between studies and reduce the time spent on repeatedly
building similar programs. While we do recognize, that this kind of standard eval-
uation suite will be able to fit every use case [43] we sill believe that there could
be great value in this. The evaluation suite that we built for this thesis could serve
as a starting point, as the architecture has been set up in a way to allow for more
projects, algorithms and metrics to be added without much work.

5.8.2 Analyze Smaller Projects

One of the limitations of this thesis was the restriction on projects with at least 3000
commits. The problems with smaller projects from an evaluation point of view is

65

5. Discussion

that the possible size of the pseudo future becomes smaller which might lead to less
reliable results. However many on GitHub have less than 3000 commits and could
potentially profit from the usage of an algorithm like Bugspots or Linespots. To get
a better understanding of how Linespots performs for smaller, less mature projects,
it would be useful to also do an evaluation including them.

5.8.3 Linespots Performance

One of the big benefits of Bugspots is the short run time and the simplicity of
the algorithm. While Linespots might be a worthwhile alternative in regards to
performance, the current iteration of the implementation has suffered severe per-
formance regressions compared to the first iteration and now has a lot longer run
times. To make Linespots a viable alternative to Bugspots, the performance has to
be improved to be able to compete with Bugspots again. One way to improve the
performance that we have already identified is to use the pydriller library [27] for
all git related work in the algorithm. This would also simplify the implementation
and make it easier for others to contribute.

5.8.4 Dataset Building

One of the big challenges not only for Linespots but for the entire field of fault
prediction is the lack of good datasets to work with. Currently, researchers have
the option to either go with a pre-built set like Defects4J [29] that consists of a
collection of elements and information about faults contained in those elements or
to build their own dataset as done in this thesis. The first approach severely limits
the sample size and thus generalizability of the studies done. All of the pre-build
datasets we encountered during our research consisted solely of projects written in
Java and the number of projects in the sets was low. The benefit of these sets usually
is more complete information about faults and the time savings from not building
a new dataset.

The second approach, building a new dataset, allows for arbitrary sample size and
project choice, which improves the generalizability of the results, but comes with the
drawback, that techniques for extracting fault information from version history are
underdeveloped. The identification through commit message, as used in this thesis,
does work if projects use unique identifiers in their commit messages for different
commit types. This is however not the case for many projects which makes this
approach unreliable and filters our many projects again.

We propose two measures to improve the current situation. First, we recommend
all practitioners to adapt some kind of commit message convention and enforce it
for their projects. While there are other benefits to it as well, it would greatly
improve the ability to identify fix inducing commits through commit messages. The
best example that we encountered during this research is used by Discourse [22]. In
addition to that, we think that a lot of useful information could be pulled from issue

66

5. Discussion

trackers but there are no tools to support researchers to achieve this. For this reason,
we think there could be a lot of value in more tools to automate dataset generation,
similar to how it is done in this thesis. This would allow for larger samples sizes
and a better distribution of projects to analyze and thus improve the reliability of
the entire field.

67

5. Discussion

68

6
Conclusion

This thesis set out to deepen the understanding of Linespots and its capabilities
as a fault prediction algorithm. The main goal was to analyze the performance
of Linespots with a better-designed experiment with a larger sample and stronger
statistical method. The second aim for this thesis was to answer questions that
repeatedly came up during discussions of the algorithm and investigate if some of
the ideas brought up during those discussions could improve the performance of
Linespots notably. Finally, this study was undertaken to further investigate the
similarities and differences between Bugspots and Linespots and thus a file-level
and a line-level granularity.

Our analysis shows that there are no consistent effects for both the time-versions and
the weighting-functions, but there is a lot of uncertainty in the results so differences
in performance between both time-versions and weighting-functions can be expected
for individual projects. Since this thesis was limited to only analyzing the impact
of the time-versions and weighting-functions, we have not identified the cause of
this uncertainty. This thesis also shows that, while a cut-off point around 5% LOC
might be a good default to use Linespots as a classifier, the performance of the
classification is low. When comparing Bugspots to Linespots, we found that their
performance for the averaging metrics was similar. However, when analyzing the
EXAM25 and EInspect25EXAM Linespots performs better than Bugspots which
indicates more predicted faults in early parts of the result list. Still, the results
are uncertain enough that either algorihm could perform better depending on the
project. Finally, we found that the order of predicted faults differs substantially
between Bugspots and Linespots.

The practical implications of these findings are the usage of the index-based time-
version, due to simpler implementation and small average performance lead, as well
as the Google-weighting-function based on a small average performance lead and the
results of Lewis et al. [15]. In addition to that, we discourage the use of Linespots
as a classifier in production environments due to its low performance. Based on
the findings of Lewis et al. [15] we also discourage the usage of Linespots for code
inspection and instead agree with it being used to focus code testing efforts. Lastly,
future research in the field of fault prediction should consider using Linespots as a
baseline for fault prediction instead of Bugspots as it does show the potential to
perform better for the more important early parts of the result list.

69

6. Conclusion

70

Bibliography

[1] J. T. Nosek and P. Palvia, “Software maintenance management: Changes in
the last decade”, Journal of Software Maintenance: Research and Practice,
vol. 2, no. 3, pp. 157–174, Sep. 1990, issn: 1040550X, 1096908X. doi: 10.
1002/smr.4360020303. [Online]. Available: http://doi.wiley.com/10.
1002/smr.4360020303 (visited on 05/07/2019).

[2] N. Juristo and A. M. Moreno, Basics of Software Engineering Experimenta-
tion. Boston, MA: Springer US, 2001. doi: 10.1007/978-1-4757-3304-4.
[Online]. Available: http://link.springer.com/10.1007/978-1-4757-
3304-4 (visited on 08/31/2019).

[3] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures to Predict
System Defect Density”, in Proceedings of the 27th International Conference
on Software Engineering, (St. Louis, MO, USA), ser. ICSE ’05, New York,
NY, USA: ACM, 2005, pp. 284–292, isbn: 978-1-58113-963-1. doi: 10.1145/
1062455.1062514. [Online]. Available: http://doi.acm.org/10.1145/
1062455.1062514 (visited on 07/16/2019).

[4] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, “Predicting
Faults from Cached History”, in 29th International Conference on Software
Engineering (ICSE’07), Minneapolis, MN, USA: IEEE, May 2007, pp. 489–
498, isbn: 978-0-7695-2828-1. doi: 10.1109/ICSE.2007.66. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/4222610/ (visited on 05/06/2019).

[5] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A Crosstab-based Statistical Method
for Effective Fault Localization”, in And Validation 2008 1st International
Conference on Software Testing, Verification, Apr. 2008, pp. 42–51. doi: 10.
1109/ICST.2008.65.

[6] D. J. Hand, “Measuring classifier performance: A coherent alternative to the
area under the ROC curve”, Machine Learning, vol. 77, no. 1, pp. 103–123,
Oct. 2009, issn: 0885-6125, 1573-0565. doi: 10.1007/s10994-009-5119-5.
[Online]. Available: http://link.springer.com/10.1007/s10994- 009-
5119-5 (visited on 07/15/2019).

[7] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and com-
prehensive investigation of methods to build and evaluate fault prediction
models”, Journal of Systems and Software, vol. 83, no. 1, pp. 2–17, Jan. 2010,
issn: 01641212. doi: 10.1016/j .jss.2009 .06.055. [Online]. Available:

71

https://doi.org/10.1002/smr.4360020303
https://doi.org/10.1002/smr.4360020303
http://doi.wiley.com/10.1002/smr.4360020303
http://doi.wiley.com/10.1002/smr.4360020303
https://doi.org/10.1007/978-1-4757-3304-4
http://link.springer.com/10.1007/978-1-4757-3304-4
http://link.springer.com/10.1007/978-1-4757-3304-4
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1145/1062455.1062514
http://doi.acm.org/10.1145/1062455.1062514
http://doi.acm.org/10.1145/1062455.1062514
https://doi.org/10.1109/ICSE.2007.66
http://ieeexplore.ieee.org/document/4222610/
https://doi.org/10.1109/ICST.2008.65
https://doi.org/10.1109/ICST.2008.65
https://doi.org/10.1007/s10994-009-5119-5
http://link.springer.com/10.1007/s10994-009-5119-5
http://link.springer.com/10.1007/s10994-009-5119-5
https://doi.org/10.1016/j.jss.2009.06.055

Bibliography

http://linkinghub.elsevier.com/retrieve/pii/S0164121209001605
(visited on 11/17/2018).

[8] M. D’Ambros, M. Lanza, and R. Robbes, “An extensive comparison of bug
prediction approaches”, in 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), Cape Town, South Africa: IEEE, May
2010, pp. 31–41, isbn: 978-1-4244-6802-7. doi: 10.1109/MSR.2010.5463279.
[Online]. Available: http : / / ieeexplore . ieee . org / document / 5463279/
(visited on 11/17/2018).

[9] C. Lewis and R. Ou. (Dec. 14, 2011). Bug Prediction at Google, [Online]. Avail-
able: http://google-engtools.blogspot.com/2011/12/bug-prediction-
at-google.html (visited on 05/06/2019).

[10] C. Parnin and A. Orso, “Are Automated Debugging Techniques Actually Help-
ing Programmers?”, in Proceedings of the 2011 International Symposium on
Software Testing and Analysis, (Toronto, Ontario, Canada), ser. ISSTA ’11,
New York, NY, USA: ACM, 2011, pp. 199–209, isbn: 978-1-4503-0562-4. doi:
10.1145/2001420.2001445. [Online]. Available: http://doi.acm.org/10.
1145/2001420.2001445 (visited on 07/17/2019).

[11] ——, “Are automated debugging techniques actually helping programmers?”,
in Proceedings of the 2011 International Symposium on Software Testing and
Analysis - ISSTA ’11, Toronto, Ontario, Canada: ACM Press, 2011, p. 199,
isbn: 978-1-4503-0562-4. doi: 10.1145/2001420.2001445. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=2001420.2001445 (visited
on 08/15/2019).

[12] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, “BugCache
for Inspections: Hit or Miss?”, in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software
Engineering, (Szeged, Hungary), ser. ESEC/FSE ’11, New York, NY, USA:
ACM, 2011, pp. 322–331, isbn: 978-1-4503-0443-6. doi: 10.1145/2025113.
2025157. [Online]. Available: http://doi.acm.org/10.1145/2025113.
2025157 (visited on 04/26/2019).

[13] M. DAmbros, M. Lanza, and R. Robbes, “Evaluating defect prediction ap-
proaches: A benchmark and an extensive comparison”, Empirical Software
Engineering, vol. 17, no. 4-5, pp. 531–577, Aug. 2012, issn: 1382-3256, 1573-
7616. doi: 10.1007/s10664-011-9173-9. [Online]. Available: http://link.
springer.com/10.1007/s10664-011-9173-9 (visited on 02/08/2019).

[14] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A Systematic
Literature Review on Fault Prediction Performance in Software Engineering”,
IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1276–1304,
Nov. 2012, issn: 0098-5589, 1939-3520. doi: 10.1109/TSE.2011.103. [Online].
Available: http://ieeexplore.ieee.org/document/6035727/ (visited on
11/17/2018).

72

http://linkinghub.elsevier.com/retrieve/pii/S0164121209001605
https://doi.org/10.1109/MSR.2010.5463279
http://ieeexplore.ieee.org/document/5463279/
http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html
http://google-engtools.blogspot.com/2011/12/bug-prediction-at-google.html
https://doi.org/10.1145/2001420.2001445
http://doi.acm.org/10.1145/2001420.2001445
http://doi.acm.org/10.1145/2001420.2001445
https://doi.org/10.1145/2001420.2001445
http://portal.acm.org/citation.cfm?doid=2001420.2001445
https://doi.org/10.1145/2025113.2025157
https://doi.org/10.1145/2025113.2025157
http://doi.acm.org/10.1145/2025113.2025157
http://doi.acm.org/10.1145/2025113.2025157
https://doi.org/10.1007/s10664-011-9173-9
http://link.springer.com/10.1007/s10664-011-9173-9
http://link.springer.com/10.1007/s10664-011-9173-9
https://doi.org/10.1109/TSE.2011.103
http://ieeexplore.ieee.org/document/6035727/

Bibliography

[15] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead, “Does bug
prediction support human developers? Findings from a Google case study”,
in 2013 35th International Conference on Software Engineering (ICSE), May
2013, pp. 372–381. doi: 10.1109/ICSE.2013.6606583.

[16] S. for Neuroscience, “Author-Initiated Retraction: Anderson et al, Induced
Alpha Rhythms Track the Content and Quality of Visual Working Mem-
ory Representations with High Temporal Precision”, Journal of Neuroscience,
vol. 35, no. 6, pp. 2838–2838, Feb. 11, 2015, issn: 0270-6474, 1529-2401. doi:
10.1523/JNEUROSCI.0074-15.2015. pmid: 25673870. [Online]. Available:
https://www.jneurosci.org/content/35/6/2838 (visited on 07/24/2019).

[17] T.-D. B. Le, D. Lo, C. Le Goues, and L. Grunske, “A Learning-to-rank Based
Fault Localization Approach Using Likely Invariants”, in Proceedings of the
25th International Symposium on Software Testing and Analysis, (Saarbrücken,
Germany), ser. ISSTA 2016, New York, NY, USA: ACM, 2016, pp. 177–188,
isbn: 978-1-4503-4390-9. doi: 10.1145/2931037.2931049. [Online]. Available:
http://doi.acm.org/10.1145/2931037.2931049 (visited on 07/17/2019).

[18] M. Scholz, “A Line Based Approach for Bugspots”, p. 61, Oct. 2016. [Online].
Available: http://www.sts.tuhh.de/pw-and-m-theses/2016/scholz16.
pdf (visited on 02/04/2019).

[19] Z. Tóth, P. Gyimesi, and R. Ferenc, “A Public Bug Database of GitHub
Projects and Its Application in Bug Prediction”, in Computational Science and
Its Applications – ICCSA 2016, O. Gervasi, B. Murgante, S. Misra, A. M. A.
Rocha, C. M. Torre, D. Taniar, B. O. Apduhan, E. Stankova, and S. Wang,
Eds., vol. 9789, Cham: Springer International Publishing, 2016, pp. 625–638.
doi: 10.1007/978-3-319-42089-9_44. [Online]. Available: http://link.
springer.com/10.1007/978-3-319-42089-9_44 (visited on 04/26/2019).

[20] P.-C. Bürkner, “Brms: An R Package for Bayesian Multilevel Models Using
Stan”, Journal of Statistical Software, vol. 80, no. 1, pp. 1–28, Aug. 29, 2017,
issn: 1548-7660. doi: 10.18637/jss.v080.i01. [Online]. Available: https:
//www.jstatsoft.org/index.php/jss/article/view/v080i01 (visited on
08/31/2019).

[21] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and
B. Keller, “Evaluating and Improving Fault Localization”, in 2017 IEEE/ACM
39th International Conference on Software Engineering (ICSE), Buenos Aires:
IEEE, May 2017, pp. 609–620, isbn: 978-1-5386-3868-2. doi: 10.1109/ICSE.
2017.62. [Online]. Available: http://ieeexplore.ieee.org/document/
7985698/ (visited on 05/08/2019).

[22] (Nov. 8, 2018). Discourse Development Contribution Guidelines, [Online]. Avail-
able: https://meta.discourse.org/t/discourse-development-contribution-
guidelines/3823 (visited on 08/18/2019).

[23] R. McElreath, Statistical Rethinking : A Bayesian Course with Examples in
R and Stan. Chapman and Hall/CRC, Jan. 3, 2018, isbn: 978-1-315-37249-5.
doi: 10.1201/9781315372495. [Online]. Available: https://www.taylorfrancis.
com/books/9781315372495 (visited on 08/14/2019).

73

https://doi.org/10.1109/ICSE.2013.6606583
https://doi.org/10.1523/JNEUROSCI.0074-15.2015
25673870
https://www.jneurosci.org/content/35/6/2838
https://doi.org/10.1145/2931037.2931049
http://doi.acm.org/10.1145/2931037.2931049
http://www.sts.tuhh.de/pw-and-m-theses/2016/scholz16.pdf
http://www.sts.tuhh.de/pw-and-m-theses/2016/scholz16.pdf
https://doi.org/10.1007/978-3-319-42089-9_44
http://link.springer.com/10.1007/978-3-319-42089-9_44
http://link.springer.com/10.1007/978-3-319-42089-9_44
https://doi.org/10.18637/jss.v080.i01
https://www.jstatsoft.org/index.php/jss/article/view/v080i01
https://www.jstatsoft.org/index.php/jss/article/view/v080i01
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1109/ICSE.2017.62
http://ieeexplore.ieee.org/document/7985698/
http://ieeexplore.ieee.org/document/7985698/
https://meta.discourse.org/t/discourse-development-contribution-guidelines/3823
https://meta.discourse.org/t/discourse-development-contribution-guidelines/3823
https://doi.org/10.1201/9781315372495
https://www.taylorfrancis.com/books/9781315372495
https://www.taylorfrancis.com/books/9781315372495

Bibliography

[24] T. Menzies and M. Shepperd, “Bad Smells in Software Analytics Papers”,
Mar. 14, 2018. arXiv: 1803.05518 [cs]. [Online]. Available: http://arxiv.
org/abs/1803.05518 (visited on 04/26/2019).

[25] J. Piironen, M. Paasiniemi, and A. Vehtari, “Projective Inference in High-
dimensional Problems: Prediction and Feature Selection”, Oct. 4, 2018. arXiv:
1810.02406 [cs, stat]. [Online]. Available: http://arxiv.org/abs/1810.
02406 (visited on 07/24/2019).

[26] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An Empirical Study
of Fault Localization Families and Their Combinations”, Mar. 27, 2018. arXiv:
1803.09939 [cs]. [Online]. Available: http://arxiv.org/abs/1803.09939
(visited on 05/06/2019).

[27] S. Davide, Python Framework to analyse Git repositories. Contribute to ishep-
ard/pydriller development by creating an account on GitHub, Aug. 16, 2019.
[Online]. Available: https://github.com/ishepard/pydriller (visited on
08/18/2019).

[28] I. Grigorik, Implementation of simple bug prediction hotspot heuristic: Igrig-
orik/bugspots, Aug. 15, 2019. [Online]. Available: https : / / github . com /
igrigorik/bugspots (visited on 08/17/2019).

[29] R. Just, A Database of Real Faults and an Experimental Infrastructure to En-
able Controlled Experiments in Software Engineering Research: Rjust/defects4j,
Aug. 4, 2019. [Online]. Available: https://github.com/rjust/defects4j
(visited on 08/18/2019).

[30] L. Li, S. Lessmann, and B. Baesens, “Evaluating Software Defect Prediction
Performance: An Updated Benchmarking Study”, SSRN Electronic Journal,
2019, issn: 1556-5068. doi: 10 . 2139 / ssrn . 3312070. [Online]. Available:
https://www.ssrn.com/abstract=3312070 (visited on 02/08/2019).

[31] D. J. Schad, M. Betancourt, and S. Vasishth, “Toward a principled Bayesian
workflow in cognitive science”, Apr. 29, 2019. arXiv: 1904.12765 [stat]. [On-
line]. Available: http://arxiv.org/abs/1904.12765 (visited on 08/06/2019).

[32] M. Scholz, This repository contains the evaluation data and analysis scripts
and results for my master thesis.: Sims1253/linespots-analysis, Aug. 11, 2019.
[Online]. Available: https://github.com/sims1253/linespots-analysis
(visited on 08/17/2019).

[33] Stan development repository (home page is linked below). The master branch
contains the current release. The develop branch contains the latest stable de-
velopment. See the Developer Process Wiki f.. Stan, Jul. 31, 2019. [Online].
Available: https://github.com/stan-dev/stan (visited on 08/01/2019).

[34] A. Vehtari, A. Gelman, J. Gabry, Y. Yao, P.-C. Bürkner, B. Goodrich, J. Piiro-
nen, and M. Magnusson, Loo: Efficient Leave-One-Out Cross-Validation and
WAIC for Bayesian Models, version 2.1.0, Mar. 13, 2019. [Online]. Available:
https://CRAN.R-project.org/package=loo (visited on 08/31/2019).

74

http://arxiv.org/abs/1803.05518
http://arxiv.org/abs/1803.05518
http://arxiv.org/abs/1803.05518
http://arxiv.org/abs/1810.02406
http://arxiv.org/abs/1810.02406
http://arxiv.org/abs/1810.02406
http://arxiv.org/abs/1803.09939
http://arxiv.org/abs/1803.09939
https://github.com/ishepard/pydriller
https://github.com/igrigorik/bugspots
https://github.com/igrigorik/bugspots
https://github.com/rjust/defects4j
https://doi.org/10.2139/ssrn.3312070
https://www.ssrn.com/abstract=3312070
http://arxiv.org/abs/1904.12765
http://arxiv.org/abs/1904.12765
https://github.com/sims1253/linespots-analysis
https://github.com/stan-dev/stan
https://CRAN.R-project.org/package=loo

Bibliography

[35] R. L. Wasserstein, A. L. Schirm, and N. A. Lazar, “Moving to a World Be-
yond p < 0.05”, The American Statistician, vol. 73, pp. 1–19, sup1 Mar. 29,
2019, issn: 0003-1305. doi: 10 . 1080 / 00031305 . 2019 . 1583913. [Online].
Available: https://doi.org/10.1080/00031305.2019.1583913 (visited on
05/08/2019).

[36] (). Are there any statistics that show the popularity of Git versus SVN?,
[Online]. Available: https://softwareengineering.stackexchange.com/
questions/136079/are-there-any-statistics-that-show-the-popularity-
of-git-versus-svn (visited on 05/08/2019).

[37] (). Build software better, together, [Online]. Available: https://github.com
(visited on 08/17/2019).

[38] (). GICS - Global Industry Classification Standard - MSCI, [Online]. Available:
https://www.msci.com/gics (visited on 05/08/2019).

[39] (). Max Scholz / linespots-lib, [Online]. Available: https://gitlab.com/
sims1253/linespots-lib (visited on 05/08/2019).

[40] (). Stack Overflow Developer Survey 2018, [Online]. Available: https : / /
insights.stackoverflow.com/survey/2018/?utm_source=so-owned&utm_
medium=social&utm_campaign=dev-survey-2018&utm_content=social-
share (visited on 05/08/2019).

[41] (). Stan, [Online]. Available: //mc-stan.org/ (visited on 08/31/2019).
[42] (). Stan Discourse, [Online]. Available: https://discourse.mc-stan.org/

(visited on 08/20/2019).
[43] (). Standards, [Online]. Available: https : / / xkcd . com / 927/ (visited on

08/18/2019).

75

https://doi.org/10.1080/00031305.2019.1583913
https://doi.org/10.1080/00031305.2019.1583913
https://softwareengineering.stackexchange.com/questions/136079/are-there-any-statistics-that-show-the-popularity-of-git-versus-svn
https://softwareengineering.stackexchange.com/questions/136079/are-there-any-statistics-that-show-the-popularity-of-git-versus-svn
https://softwareengineering.stackexchange.com/questions/136079/are-there-any-statistics-that-show-the-popularity-of-git-versus-svn
https://github.com
https://www.msci.com/gics
https://gitlab.com/sims1253/linespots-lib
https://gitlab.com/sims1253/linespots-lib
https://insights.stackoverflow.com/survey/2018/?utm_source=so-owned&utm_medium=social&utm_campaign=dev-survey-2018&utm_content=social-share
https://insights.stackoverflow.com/survey/2018/?utm_source=so-owned&utm_medium=social&utm_campaign=dev-survey-2018&utm_content=social-share
https://insights.stackoverflow.com/survey/2018/?utm_source=so-owned&utm_medium=social&utm_campaign=dev-survey-2018&utm_content=social-share
https://insights.stackoverflow.com/survey/2018/?utm_source=so-owned&utm_medium=social&utm_campaign=dev-survey-2018&utm_content=social-share
//mc-stan.org/
https://discourse.mc-stan.org/
https://xkcd.com/927/

Bibliography

76

A
Dataset

A.1 Past Work

Rahman et al. [12]

• Apache Lucene: https://github.com/apache/lucene-solr, 31000 commits, Java

• httpd: https://github.com/apache/httpd, 31000 commits, C

• gimp: https://github.com/GNOME/gimp, 43000 commits, C

• nautilus: https://github.com/GNOME/nautilus, 21000 commits, C

• evolution: https://github.com/GNOME/evolution, 44000 commits, C

D’Ambros et al. [8]

• Eclipse JDT Core: https://github.com/eclipse/eclipse.jdt.core, 24000 com-
mits, Java

• Eclipse PDE UI: https://github.com/eclipse/eclipse.pde.ui, 13000 commits,
Java

• Equinox Framework: https://github.com/eclipse/rt.equinox.framework, 4700
commits, Java

• Mylyn: https://github.com/eclipse/mylyn, 1200 commits, Java, Shell

• Apache Lucene: https://github.com/apache/lucene-solr, 31000 commits, Java

Tóth et al. [19] and later Li et al. [30]

• Android-Universal-Image-Loader: https://github.com/nostra13/Android-Universal-
Image-Loader, 1000 commits, Java

• BroadleafCommerce: https://github.com/BroadleafCommerce/BroadleafCommerce,
16000 commits, Java

• MapDB: https://github.com/jankotek/mapdb, 2100 commits, Java

• antlr4: https://github.com/antlr/antlr4, 7000 commits, Java, Python, C#,
C++, Swift

I

A. Dataset

• ceylon-ide-eclipse: https://github.com/eclipse/ceylon-ide-eclipse/tree/_old/master,
8000 commits, Java, old/master branch!

• Elasticsearch, https://github.com/elastic/elasticsearch, 45700 commits, Java

• hazelcast: https://github.com/hazelcast/hazelcast, 28000 commits, Java

• junit: https://github.com/junit-team/junit5, 5600 commits, Java

• mcMMO: https://github.com/mcMMO-Dev/mcMMO, 5400 commits, Java

• mct: https://github.com/nasa/mct, 1000 commits, Java

• neo4j: https://github.com/neo4j/neo4j, 60000 commits, Java

• netty: https://github.com/search?q=netty, 9000 commits, Java

• orientdb: https://github.com/orientechnologies/orientdb, 18000 commits, Java

• oryx: https://github.com/OryxProject/oryx, 1100 commits, Java

• titan: https://github.com/thinkaurelius/titan, 4400 commits, Java Projects
were chosen based on being big, maintained java projects.

Zou et al. [26]

• Apache Commons Math: https://github.com/apache/commons-math, 6400
commits, Java

• Apache Commons Lang: https://github.com/apache/commons-lang, 5400 com-
mits, Java

• Joda-Time: https://github.com/JodaOrg/joda-time, 2000 commits, Java

• JFreeChart: https://github.com/jfree/jfreechart, 3600 commits, Java

• Google Closure compuler: https://github.com/google/closure-compiler/, 14400
commits, Java

A.2 Drawing Process

These projects were drawn from the top 1000 GitHub projects, ranked by stars.
Only projects with over 3000 commits containing source code were chosen. The
numbers starting each entry are the random numbers that pointed to the projects
in the top 1000 list at the time of building the dataset.

□ 14: https://github.com/justjavac/free-programming-books-zh_CN, not code

⊠ 83: https://github.com/GoogleChrome/lighthouse, 3300 commits, JS

□ 178: https://github.com/square/leakcanary, 800 commits, Kotlin

□ 311: https://github.com/balena-io/etcher, 2100 commits, JS

□ 591: https://github.com/eczarny/spectacle, 700 Commits, Objective-C

II

A. Dataset

⊠ 626: https://github.com/prisma/prisma, 10600 commits, Scala

⊠ 647: https://github.com/ncw/rclone, 3100 commits, Go

□ 699: https://github.com/nswbmw/N-blog, 172 commits, JS

□ 731: https://github.com/Wox-launcher/Wox, 1616 commits, C#

⊠ 765: https://github.com/typeorm/typeorm, 3800 commits, TypeScript

□ 437: https://github.com/byoungd/English-level-up-tips-for-Chinese, not code

□ 11: https://github.com/airbnb/javascript, 1700 commits, JS

□ 857: https://github.com/facebook/yoga, 1700 commits, C++, JS, Java, C#

□ 327: https://github.com/jiahaog/nativefier, 780 commits, JS

⊠ 460: https://github.com/guzzle/guzzle, 3200 commits, PHP

□ 703: https://github.com/shuzheng/zheng, 1200 commits, Java

□ 510: https://github.com/feathericons/feather, 600 commits, JS

□ 51: https://github.com/hakimel/reveal.js, 2341 commits, JS

□ 451: https://github.com/Solido/awesome-flutter, 1000 commits, Dart

□ 606: https://github.com/JacksonTian/fks, 200 commits, JS

□ 597: https://github.com/enyo/dropzone, 800 commits, JS

⊠ 67: https://github.com/moment/moment, 3700 commits, JS

⊠ 463: https://github.com/vim/vim, 9700 commits, Vim Script, C

□ 458: https://github.com/angular/material, 4700 commits, JS

⊠ 353: https://github.com/Automattic/mongoose, 10600 commits, JS

⊠ 560: https://github.com/FFmpeg/FFmpeg, 93600 commits, C

□ 535: https://github.com/jdg/MBProgressHUD, 600 commits, Objective C

□ 887: https://github.com/winterbe/java8-tutorial, 150 commits, Java

□ 29: https://github.com/axios/axios, 800 commits, JS

⊠ 163: https://github.com/discourse/discourse, 32600 commits, Ruby

Table A.1 shows all the projects from GitHub, past research and the authors choice
together with an index. This was then used to draw the final projects for this thesis.
Table A.2 shows the drawing process with the projects that were drawn and in case
of a rejection, the reason why we did not include the project.

III

A. Dataset

Table A.1: Project List with Indices

Index Project Name Index Project Name
1 Android-Universal-Image-Loader 39 moment
2 angular 40 Money Manager Ex
3 antlr4 41 MongoDB
4 Apache Lucene 42 Mongoose
5 Atom 43 mpv media player
6 bootstrap 44 Mylyn
7 BroadleafCommerce 45 MySQL
8 ceylon-ide-eclipse 46 nautilus
9 Discourse 47 neo4j
10 Django 48 netty
11 Eclipse Che 49 OpenBSD
12 Eclipse JDT Core 50 opencart
13 Eclipse PDE UI 51 OpenJDK
14 Elasticsearch 52 orientdb
15 Emacs 53 oryx
16 Equinox Framework 54 PostgreSQL
17 evolution 55 prestashop
18 FFmpeg 56 Prisma
19 Flask 57 Python
20 FreeBSD 58 Pytorch
21 gimp 59 Rails
22 GnuCash 60 Rclone
23 Go 61 react
24 guzzle 62 Redis
25 hazelcast 63 Ruby
26 httpd 64 Rust
27 junit 65 scikit-learn
28 Keras 66 Swift
29 KMyMoney 67 Tensorflow
30 kodi 68 Theano
31 lighthouse 69 titan
32 Linux 70 typeorm
33 Magento2 71 Typescript
34 MapDB 72 vim
35 MariaDB 73 vlc
36 mcMMO 74 VSCode
37 mct 75 Vue
38 media player classic home cinema 76 WooCommerce

77 zencart

IV

A. Dataset

Table A.2: Project Drawing

Index Project Usable
9 Discourse yes
40 Money Manager Ex No fix indicator
23 Go No fix indicator
55 PrestaShop yes
65 scikit-learn yes
7 BroadleafCommerce yes
48 netty No fix indicator
8 Ceylon IDE yes
76 WooCommerce yes
60 rclone No fix indicator
18 ffmpeg yes
59 Rails yes
4 Apache Lucene-Solr yes
35 MariaDB yes
45 MySQL yes
72 vim No fix indicator
38 media player classic home cinema yes
27 junit yes
16 Equinox Framework yes
6 bootstrap yes
57 Python yes

manual Commons-math yes
manual Closure compiler yes
manual Jfreechart yes
manual coala yes
manual evolution yes
manual httpd yes

V

A. Dataset

VI

B
Projpred Results

This chapter holds the projpred results for the last 5 tested cases. The first case is
shown in figure B.1.

●

●

●

●
● ● ● ● ●

●

●

●

● ● ● ● ● ●

elpd
rm

se

0 2 4 6 8

−60

−40

−20

0

0.0000

0.0025

0.0050

0.0075

0.0100

Number of variables in the submodel

D
iff

er
en

ce
 to

 th
e

ba
se

lin
e

sigma

predictors5

predictors6

predictors3

(Intercept)

0.00 0.25 0.50 0.75

Figure B.1: varsel_plot and mcmc_areas plot for AUCECEXAM prediction in
RQ1 and RQ2

VII

B. Projpred Results

●

●
●

●

● ● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

elpd
rm

se

0 2 4 6 8 10

−90

−60

−30

0

0.0000

0.0025

0.0050

0.0075

0.0100

Number of variables in the submodel

D
iff

er
en

ce
 to

 th
e

ba
se

lin
e

sigma

predictors5

predictors6

predictors7

predictors4

(Intercept)

0.0 0.1 0.2

Figure B.2: varsel_plot and mcmc_areas plot for EXAM prediction in RQ4

VIII

B. Projpred Results

●

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ●

elpd
rm

se

0 2 4 6 8 10

−90

−60

−30

0

0.0000

0.0025

0.0050

0.0075

0.0100

Number of variables in the submodel

D
iff

er
en

ce
 to

 th
e

ba
se

lin
e

sigma

predictors5

predictors6

predictors7

predictors4

(Intercept)

0.00 0.25 0.50 0.75

Figure B.3: varsel_plot and mcmc_areas plot for EXAM prediction in RQ4

IX

B. Projpred Results

●

●

●

●
● ● ●

● ● ●

●

●

●

●
● ● ●

● ● ●

elpd
rm

se

0 2 4 6 8 10

−100

−75

−50

−25

0

0.000

0.001

0.002

0.003

Number of variables in the submodel

D
iff

er
en

ce
 to

 th
e

ba
se

lin
e

sigma

predictors8

predictors9

predictors2

predictors6

predictors3

predictors5

predictors7

predictors1

predictors4

(Intercept)

−0.02 0.00 0.02

Figure B.4: varsel_plot and mcmc_areas plot for EXAM25 prediction in RQ4

X

B. Projpred Results

●

●

●
●

●
● ● ●

● ●

●

●

●
●

●
● ● ●

● ●

elpd
rm

se

0 2 4 6 8 10

−30

−20

−10

0

0.000

0.005

0.010

0.015

0.020

Number of variables in the submodel

D
iff

er
en

ce
 to

 th
e

ba
se

lin
e

predictors8

predictors2

predictors6

predictors9

predictors4

predictors7

predictors5

predictors3

predictors1

−0.2 −0.1 0.0 0.1

Figure B.5: varsel_plot and mcmc_areas plot for EInspect25EXAM prediction
in RQ4

XI

B. Projpred Results

XII

C
Models

C.1 Research Question 1

C.1.1 EXAM

C.1.2 AUCECEXAM

EXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βwWi + βlLi + γP roject[i]

α ∼ Normal(0, 0.5)
βw, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
γ̄, σ ∼ HalfCauchy(0, 0.1)

ϕ ∼ Gamma(0.1, 0.1)

Model C.1: Simple model for EXAM using Weighting

XIII

C. Models

AUCECEXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βwWi + βlLi + γP roject[i]

α ∼ Normal(0, 0.5)
βw, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
γ̄, σ ∼ HalfCauchy(0, 0.1)

ϕ ∼ Gamma(0.1, 0.1)

Model C.2: Simple model for AUCECEXAM using Weighting

C.2 Research Question 2

C.2.1 EXAM

C.2.2 AUCECEXAM

EXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βtTi + βlLi + γP roject[i]

α ∼ Normal(0, 0.5)
βt, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
γ̄, σ ∼ HalfCauchy(0, 0.1)

ϕ ∼ Gamma(0.1, 0.1)

Model C.3: Simple model for EXAM using Algorithm

XIV

C. Models

AUCECEXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βtTi + βlLi + γP roject[i]

α ∼ Normal(0, 0.5)
βt, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
γ̄, σ ∼ HalfCauchy(0, 0.1)

ϕ ∼ Gamma(0.1, 0.1)

Model C.4: Simple model for EXAM using Algorithm

C.3 Research Question 4

C.3.1 AUCECEXAM

EXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βaAi + βlLi + γP roject[i]

α ∼ Normal(0, 0.5)
βa, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
γ̄, σ ∼ HalfCauchy(0, 0.1)

ϕ ∼ Gamma(0.1, 0.1)

Model C.5: Simple model for EXAM using Algorithm

XV

C. Models

AUCECEXAMi ∼ Beta(µi, ϕ)
logit(µi) = α + βaAi + βlLi + γP roject[i]

α ∼ Normal(0, 0.5)
βa, βl ∼ Normal(0, 0.5)

γj ∼ Normal(γ̄, σ)
γ̄, σ ∼ HalfCauchy(0, 0.1)

ϕ ∼ Gamma(0.1, 0.1)

Model C.6: Simple model for EXAM using Algorithm

XVI

D
Model Diagnostics

D.1 RQ1 Diagnostics

D.1.1 EXAM Model 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.1: Rhat and n_eff for Model C.1

XVII

D. Model Diagnostics

accept_stat__ lp__

0.92 0.96 1.00 720 730 740 750 760

720

730

740

750

760

0.92 0.96 1.00

accept_stat__

lp
__

(a) Acceptance

720

730

740

750

760

No divergence

lp
__

0 divergences

0.90

0.95

1.00

1.05

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent transitions

Figure D.2: Acceptance and divergent transitions for model C.1

720

730

740

750

760

0.013
(chain 2)

0.014
(chain 1)

0.015
(chain 3)

0.027
(chain 4)

lp
__

0.90

0.95

1.00

1.05

0.013
(chain 2)

0.014
(chain 1)

0.015
(chain 3)

0.027
(chain 4)

ac
ce

pt
_s

ta
t_

_

(a) Step size

720

730

740

750

760

5 6 7 8 9 10

treedepth__

lp
__

1

5 6 7 8 9 10

treedepth__

ac
ce

pt
_s

ta
t_

_

6 8 10

treedepth__

(b) Tree depth

Figure D.3: Step size and tree depth for model C.1

XVIII

D. Model Diagnostics

3 4

1 2

−25 0 25 −25 0 25

E − E

πE

π∆E

(a) Energy

prior_phi prior_sd_Project lp__

r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]r_Project[evolution,Intercept]prior_b

r_Project[commons−math,Intercept]r_Project[discourse,Intercept]r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]

r_Project[mpc−hc,Intercept]r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]

r_Project[broadleafcommerce,Intercept]r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]

b_Interceptb_Weightinglinear_weighting_functionb_Weightingflat_weighting_functionb_LOC sd_Project__Intercept phi

0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

150
175
200
225
250

−0.9

−0.6

−0.3

0.25
0.50
0.75
1.00

−0.50
−0.25

0.00
0.25

−1
0
1
2

0.25
0.50
0.75
1.00

−0.50
−0.25

0.00
0.25

−1.2

−0.8

−0.4

0.0

−2.0

−1.5

−1.0

−0.3
0.0
0.3
0.6

0.10
0.15
0.20
0.25
0.30

−0.6
−0.4
−0.2

0.0
0.2
0.4

0.00
0.25
0.50
0.75

−0.75
−0.50
−0.25

0.00
0.25

0.0
0.3
0.6
0.9

−0.10
−0.05

0.00
0.05
0.10

−0.25
0.00
0.25
0.50

0.0
0.3
0.6
0.9

−0.50
−0.25

0.00
0.25
0.50

−1.8
−1.5
−1.2
−0.9
−0.6

720
730
740
750
760

−0.10
−0.05

0.00
0.05

−0.50
−0.25

0.00
0.25

−0.50
−0.25

0.00
0.25
0.50

−0.50
−0.25

0.00
0.25

0.00
0.25
0.50
0.75

0
1000
2000
3000
4000
5000

−1.50
−1.25
−1.00
−0.75

−0.50
−0.25

0.00
0.25
0.50

−0.75
−0.50
−0.25

0.00

0.00
0.25
0.50
0.75
1.00

−0.3
0.0
0.3
0.6

0

20

40

Chain

1

2

3

4

(b) Trace plots

Figure D.4: Energy and trace plots for model C.1

D.1.2 EXAM Model 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1 1.5

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.5: Rhat and n_eff for model 4.1

XIX

D. Model Diagnostics

accept_stat__ lp__

0.7 0.8 0.9 1.0 710 720 730 740 750

710

720

730

740

750

0.7 0.8 0.9 1.0

accept_stat__

lp
__

(a) Acceptance

710

720

730

740

750

No divergence

lp
__

0 divergences

0.7

0.8

0.9

1.0

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.6: Acceptance and divergent transitions for model 4.1

710

720

730

740

750

0.004
(chain 4)

0.007
(chain 2)

0.010
(chain 3)

0.011
(chain 1)

lp
__

0.7

0.8

0.9

1.0

0.004
(chain 4)

0.007
(chain 2)

0.010
(chain 3)

0.011
(chain 1)

ac
ce

pt
_s

ta
t_

_

(a) Step size

710

720

730

740

750

6 7 8 9 10 11 12

treedepth__

lp
__

1

6 7 8 9 10 11 12

treedepth__

ac
ce

pt
_s

ta
t_

_

7 9 11

treedepth__

(b) Tree depth

Figure D.7: Step size and tree depth for model 4.1

XX

D. Model Diagnostics

3 4

1 2

−20 0 20 40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

r_Project[woocommerce,Intercept]r_Project[evolution,Intercept]prior_b prior_phi prior_sd_Languageprior_sd_Project lp__

r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]

r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]r_Project[discourse,Intercept]

r_Project[broadleafcommerce,Intercept]r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]

r_Language[Java,Intercept]r_Language[C,Intercept]r_Language[Python,Intercept]r_Language[JS,Intercept]r_Language[Ruby,Intercept]r_Language[C++,Intercept]r_Language[PHP,Intercept]

b_Interceptb_Weightinglinear_weighting_functionb_Weightingflat_weighting_functionb_LOC sd_Language__Interceptsd_Project__Intercept phi

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000
125
150
175
200
225
250

−2

−1

0

1

−0.8
−0.4

0.0

−1.0
−0.5

0.0
0.5

−1

0

710
720
730
740
750

0.25

0.50

0.75

−3
−2
−1

0

−1.0
−0.5

0.0
0.5

0.0

0.5

−0.5
0.0
0.5
1.0

0
3000
6000
9000

0

1

2

3

−2

−1

0

1

−1.0
−0.5

0.0
0.5

−0.5
0.0
0.5
1.0

−0.5
0.0
0.5
1.0

0
200
400
600
800

0.10
0.15
0.20
0.25
0.30
0.35

−2
−1

0

−0.6
−0.3

0.0
0.3

−1.0
−0.5

0.0
0.5

−1.0
−0.5

0.0
0.5
1.0

0

20

40

60

−0.10
−0.05

0.00
0.05

−1

0

1

−0.5

0.0

0.5

1.0

−0.3
0.0
0.3
0.6
0.9

−1.5
−1.0
−0.5

0.0
0.5

−2
−1

0
1
2

−0.05
0.00
0.05
0.10

−2

−1

0

1

−0.5

0.0

0.0

0.4

0.8

−1.00
−0.75
−0.50
−0.25

0.00

−0.5

0.0

0.5

−2

−1

0

1

−2

−1

0

1

−0.5

0.0

−0.75
−0.50
−0.25

0.00
0.25

−0.5

0.0

0.5

−0.5
0.0
0.5
1.0

Chain

1

2

3

4

(b) Trace plots

Figure D.8: Energy and trace plots for model 4.1

D.1.3 AUCECEXAM Model 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.9: Rhat and n_eff for Model C.2

XXI

D. Model Diagnostics

accept_stat__ lp__

0.85 0.90 0.95 1.00 720 730 740 750 760

720

730

740

750

760

0.85 0.90 0.95 1.00

accept_stat__

lp
__

(a) Acceptance

720

730

740

750

760

No divergence

lp
__

0 divergences

0.85

0.90

0.95

1.00

1.05

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.10: Acceptance and divergent transitions for Model C.2

720

730

740

750

760

0.010
(chain 1)

0.010
(chain 4)

0.025
(chain 2)

0.035
(chain 3)

lp
__

0.85

0.90

0.95

1.00

1.05

0.010
(chain 1)

0.010
(chain 4)

0.025
(chain 2)

0.035
(chain 3)

ac
ce

pt
_s

ta
t_

_

(a) Step size

720

730

740

750

760

4 5 6 7 8 9 10

treedepth__

lp
__

1

4 5 6 7 8 9 10

treedepth__

ac
ce

pt
_s

ta
t_

_

5 7 9

treedepth__

(b) Tree depth

Figure D.11: Step size and tree depth for Model C.2

XXII

D. Model Diagnostics

3 4

1 2

−20 0 20 40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

prior_phi prior_sd_Project lp__

r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]r_Project[evolution,Intercept]prior_b

r_Project[commons−math,Intercept]r_Project[discourse,Intercept]r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]

r_Project[mpc−hc,Intercept]r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]

r_Project[broadleafcommerce,Intercept]r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]

b_Interceptb_Weightinglinear_weighting_functionb_Weightingflat_weighting_functionb_LOC sd_Project__Intercept phi

0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

150
175
200
225
250

0.0
0.3
0.6
0.9

−1.25
−1.00
−0.75
−0.50
−0.25

0.00

−0.50
−0.25

0.00
0.25
0.50

−2
−1

0
1
2

0.4
0.6
0.8

−0.25
0.00
0.25
0.50

0.5

1.0

0.8

1.2

1.6

2.0

−0.6
−0.3

0.0
0.3

−0.35
−0.30
−0.25
−0.20
−0.15
−0.10

−0.50
−0.25

0.00
0.25
0.50
0.75

−1.00
−0.75
−0.50
−0.25

0.00
0.25

−0.3
0.0
0.3
0.6
0.9

−0.9
−0.6
−0.3

0.0
0.3

−0.05
0.00
0.05
0.10

−0.50
−0.25

0.00
0.25

−0.8

−0.4

0.0

−0.6
−0.3

0.0
0.3

0.6
0.9
1.2
1.5
1.8

720
730
740
750
760

−0.05
0.00
0.05
0.10

−0.50
−0.25

0.00
0.25
0.50
0.75

−0.50
−0.25

0.00
0.25
0.50

−0.50
−0.25

0.00
0.25
0.50
0.75

−1.00
−0.75
−0.50
−0.25

0.00

0

200

400

600

0.75
1.00
1.25
1.50

−0.50
−0.25

0.00
0.25
0.50

0.00
0.25
0.50
0.75
1.00

−1.00
−0.75
−0.50
−0.25

0.00
0.25

−0.6
−0.3

0.0
0.3

0

20

40

60

Chain

1

2

3

4

(b) Trace plots

Figure D.12: Energy and trace plots for Model C.2

D.1.4 AUCECEXAM Model 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1 1.5

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.13: Rhat and n_eff for Model 4.2

XXIII

D. Model Diagnostics

accept_stat__ lp__

0.85 0.90 0.95 1.00 710 720 730 740 750

710

720

730

740

750

0.85 0.90 0.95 1.00

accept_stat__

lp
__

(a) Acceptance

710

720

730

740

750

No divergence

lp
__

0 divergences

0.85

0.90

0.95

1.00

1.05

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.14: Acceptance and divergent transitions for Model 4.2

710

720

730

740

750

0.005
(chain 1)

0.005
(chain 4)

0.006
(chain 3)

0.006
(chain 2)

lp
__

0.85

0.90

0.95

1.00

1.05

0.005
(chain 1)

0.005
(chain 4)

0.006
(chain 3)

0.006
(chain 2)

ac
ce

pt
_s

ta
t_

_

(a) Step size

710

720

730

740

750

6 7 8 9 10 11

treedepth__

lp
__

1

6 7 8 9 10 11

treedepth__

ac
ce

pt
_s

ta
t_

_

6 8 10

treedepth__

(b) Tree depth

Figure D.15: Step size and tree depth for Model 4.2

XXIV

D. Model Diagnostics

3 4

1 2

−40 −20 0 20 40 −40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

r_Project[woocommerce,Intercept]r_Project[evolution,Intercept]prior_b prior_phi prior_sd_Languageprior_sd_Project lp__

r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]

r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]r_Project[discourse,Intercept]

r_Project[broadleafcommerce,Intercept]r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]

r_Language[Java,Intercept]r_Language[C,Intercept]r_Language[Python,Intercept]r_Language[JS,Intercept]r_Language[Ruby,Intercept]r_Language[C++,Intercept]r_Language[PHP,Intercept]

b_Interceptb_Weightinglinear_weighting_functionb_Weightingflat_weighting_functionb_LOC sd_Language__Interceptsd_Project__Intercept phi

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000
125
150
175
200
225

−1

0

1

2

−0.4
0.0
0.4
0.8
1.2

−0.5
0.0
0.5
1.0

−1

0

1

710
720
730
740
750

0.2

0.4

0.6

0.8

0
1
2
3

−0.5
0.0
0.5
1.0

−0.6
−0.3

0.0
0.3

−1.0

−0.5

0.0

0.5

0

2000

4000

6000

0
1
2
3
4

−1

0

1

2

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

−1.0
−0.5

0.0
0.5

0
300
600
900

−0.3

−0.2

−0.1

0

1

2

−0.25
0.00
0.25
0.50
0.75

−0.5
0.0
0.5
1.0

−0.5
0.0
0.5
1.0

0
20
40
60

−0.05
0.00
0.05
0.10

−1

0

1

2

−0.5

0.0

0.5

−1.00
−0.75
−0.50
−0.25

0.00

0

1

−2
−1

0
1
2

−0.05
0.00
0.05
0.10

0

1

−0.25
0.00
0.25
0.50
0.75

−1.00
−0.75
−0.50
−0.25

0.00
0.25

0.00
0.25
0.50
0.75

−0.5

0.0

0.5

0

1

−1

0

1

−0.25
0.00
0.25
0.50

−0.4

0.0

0.4

0.8

−0.8
−0.4

0.0
0.4
0.8

−1.0
−0.5

0.0
0.5

Chain

1

2

3

4

(b) Trace plots

Figure D.16: Energy and traec plots for Model 4.2

D.2 RQ2 Diagnostics

D.2.1 EXAM Model 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.17: Rhat and n_eff for Model C.3

XXV

D. Model Diagnostics

accept_stat__ lp__

0.97 0.98 0.99 1.00 730 740 750 760

730

740

750

760

0.97 0.98 0.99 1.00

accept_stat__

lp
__

(a) Acceptance

730

740

750

760

No divergence

lp
__

0 divergences

0.96

0.98

1.00

1.02

1.04

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.18: Acceptance and divergent transitions for model C.3

730

740

750

760

0.009
(chain 1)

0.009
(chain 2)

0.013
(chain 3)

0.015
(chain 4)

lp
__

0.96

0.98

1.00

1.02

1.04

0.009
(chain 1)

0.009
(chain 2)

0.013
(chain 3)

0.015
(chain 4)

ac
ce

pt
_s

ta
t_

_

(a) Step size

730

740

750

760

5 6 7 8 9 10

treedepth__

lp
__

1

5 6 7 8 9 10

treedepth__

ac
ce

pt
_s

ta
t_

_

6 8 10

treedepth__

(b) Tree depth

Figure D.19: Step size and tree depth for model C.3

XXVI

D. Model Diagnostics

3 4

1 2

−20 0 20 40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

prior_sd_Project lp__

r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]r_Project[evolution,Intercept]prior_b prior_phi

r_Project[discourse,Intercept]r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]

r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]

b_Intercept b_Timecommit b_LOC sd_Project__Intercept phir_Project[broadleafcommerce,Intercept]

0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000
−0.6
−0.3

0.0
0.3

−0.75
−0.50
−0.25

0.00

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75

0

20

40

150
175
200
225
250

−1.00
−0.75
−0.50
−0.25

0.00

0.25
0.50
0.75
1.00
1.25

−0.50
−0.25

0.00
0.25

−2
−1

0
1
2

0.3
0.5
0.7
0.9
1.1

−0.6
−0.4
−0.2

0.0
0.2
0.4

−1.25
−1.00
−0.75
−0.50
−0.25

0.00

−2.0

−1.5

−1.0

−0.25
0.00
0.25
0.50

0.10
0.15
0.20
0.25
0.30
0.35

−0.50
−0.25

0.00
0.25

0.00
0.25
0.50
0.75
1.00

−0.6
−0.3

0.0
0.3

0.00
0.25
0.50
0.75

−0.05

0.00

0.05

−0.25
0.00
0.25
0.50

0.3
0.6
0.9
1.2

−0.4
−0.2

0.0
0.2
0.4
0.6

−1.8
−1.5
−1.2
−0.9
−0.6

730
740
750
760

−1.50
−1.25
−1.00
−0.75

−0.50
−0.25

0.00
0.25
0.50

−0.6
−0.3

0.0
0.3
0.6

−0.6
−0.4
−0.2

0.0
0.2
0.4

0.00
0.25
0.50
0.75

0
10000
20000
30000
40000

Chain

1

2

3

4

(b) Trace plots

Figure D.20: Energy and trace plots for model C.3

D.2.2 EXAM Model 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1 1.5

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.21: Rhat and n_eff for model 4.3

XXVII

D. Model Diagnostics

accept_stat__ lp__

0.5 0.6 0.7 0.8 0.9 1.0 710 720 730 740 750

710

720

730

740

750

0.6 0.7 0.8 0.9 1.0

accept_stat__

lp
__

(a) Acceptance

710

720

730

740

750

No divergence

lp
__

0 divergences

0.6

0.7

0.8

0.9

1.0

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.22: Acceptance and divergent transitions for model 4.3

710

720

730

740

750

0.005
(chain 4)

0.006
(chain 1)

0.009
(chain 2)

0.010
(chain 3)

lp
__

0.6

0.7

0.8

0.9

1.0

0.005
(chain 4)

0.006
(chain 1)

0.009
(chain 2)

0.010
(chain 3)

ac
ce

pt
_s

ta
t_

_

(a) Step size

710

720

730

740

750

6 7 8 9 10 11

treedepth__

lp
__

1

6 7 8 9 10 11

treedepth__

ac
ce

pt
_s

ta
t_

_

6 8 10

treedepth__

(b) Tree depth

Figure D.23: Step size and tree depth for model 4.3

XXVIII

D. Model Diagnostics

3 4

1 2

−40 −20 0 20 40 −40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

r_Project[evolution,Intercept]prior_b prior_phi prior_sd_Languageprior_sd_Project lp__

r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]

r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]r_Project[discourse,Intercept]r_Project[httpd,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]r_Project[junit5,Intercept]

r_Language[C,Intercept]r_Language[Python,Intercept]r_Language[JS,Intercept]r_Language[Ruby,Intercept]r_Language[C++,Intercept]r_Language[PHP,Intercept]r_Project[broadleafcommerce,Intercept]

b_Intercept b_Timecommit b_LOC sd_Language__Interceptsd_Project__Intercept phi r_Language[Java,Intercept]

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

−1

0

1

−0.50
−0.25

0.00
0.25

−0.50
−0.25

0.00
0.25
0.50

−0.5

0.0

0.5

−0.5
0.0
0.5
1.0

150
175
200
225
250

−2

−1

0

1

−1.0
−0.5

0.0
0.5

−1.0
−0.5

0.0
0.5

−1

0

710
720
730
740
750

0.25

0.50

0.75

−3
−2
−1

0

−1.0
−0.5

0.0
0.5

0.0

0.5

−0.5
0.0
0.5
1.0

0

1000

2000

0

1

2

3

−1

0

1

−1.0
−0.5

0.0
0.5

0.0
0.5
1.0
1.5

−1.0
−0.5

0.0
0.5
1.0

0
1000
2000
3000
4000

0.10
0.15
0.20
0.25
0.30
0.35

−2

−1

0

−0.8
−0.6
−0.4
−0.2

0.0
0.2

−1.0
−0.5

0.0
0.5

−1.0
−0.5

0.0
0.5

0

20

40

60

−0.04
0.00
0.04

−1

0

1

−0.5

0.0

0.5

1.0

−0.3
0.0
0.3
0.6
0.9

−2

−1

0

−2
−1

0
1
2

−2

−1

0

−2

−1

0

1

−0.75
−0.50
−0.25

0.00
0.25

0.0

0.4

0.8

−1.00
−0.75
−0.50
−0.25

0.00
0.25

−0.5

0.0

0.5

Chain

1

2

3

4

(b) Trace plots

Figure D.24: Energy and trace plots for model 4.3

D.2.3 AUCECEXAM Model 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.25: Rhat and n_eff for model C.4

XXIX

D. Model Diagnostics

accept_stat__ lp__

0.85 0.90 0.95 1.00 730 740 750 760

730

740

750

760

0.90 0.95 1.00

accept_stat__

lp
__

(a) Acceptance

730

740

750

760

No divergence

lp
__

0 divergences

0.85

0.90

0.95

1.00

1.05

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.26: Acceptance and divergent transitions for model C.4

730

740

750

760

0.016
(chain 3)

0.026
(chain 2)

0.027
(chain 4)

0.030
(chain 1)

lp
__

0.85

0.90

0.95

1.00

1.05

0.016
(chain 3)

0.026
(chain 2)

0.027
(chain 4)

0.030
(chain 1)

ac
ce

pt
_s

ta
t_

_

(a) Step size

730

740

750

760

5 6 7 8 9

treedepth__

lp
__

1

5 6 7 8 9

treedepth__

ac
ce

pt
_s

ta
t_

_

5 6 7 8 9

treedepth__

(b) Tree depth

Figure D.27: Step size and tree depth for model C.4

XXX

D. Model Diagnostics

3 4

1 2

−20 0 20 40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

prior_sd_Project lp__

r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]r_Project[evolution,Intercept]prior_b prior_phi

r_Project[discourse,Intercept]r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]

r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]

b_Intercept b_Timecommit b_LOC sd_Project__Intercept phir_Project[broadleafcommerce,Intercept]

0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

−0.25
0.00
0.25
0.50

0.00
0.25
0.50
0.75

−0.75
−0.50
−0.25

0.00

−0.75
−0.50
−0.25

0.00
0.25

0

20

40

60

150
175
200
225

0.0
0.3
0.6
0.9

−1.25
−1.00
−0.75
−0.50
−0.25

−0.4
−0.2

0.0
0.2
0.4
0.6

−2
−1

0
1
2

0.50
0.75
1.00

−0.4
−0.2

0.0
0.2
0.4
0.6

0.25
0.50
0.75
1.00
1.25

1.0

1.5

2.0

−0.50
−0.25

0.00
0.25
0.50

−0.35
−0.30
−0.25
−0.20
−0.15
−0.10

−0.25
0.00
0.25
0.50

−0.75
−0.50
−0.25

0.00

−0.25
0.00
0.25
0.50
0.75

−0.75
−0.50
−0.25

0.00

−0.04
0.00
0.04

−0.6
−0.4
−0.2

0.0
0.2

−1.00
−0.75
−0.50
−0.25

0.00

−0.6
−0.3

0.0
0.3

1.0

1.5

730
740
750
760

0.75
1.00
1.25
1.50

−0.25
0.00
0.25
0.50

−0.50
−0.25

0.00
0.25
0.50

−0.50
−0.25

0.00
0.25
0.50

−0.75
−0.50
−0.25

0.00

0
500

1000
1500

Chain

1

2

3

4

(b) Trace plots

Figure D.28: Energy and trace plots for model C.4

D.2.4 AUCECEXAM Model 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1 1.5

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.29: Rhat and n_eff for model 4.4

XXXI

D. Model Diagnostics

accept_stat__ lp__

0.7 0.8 0.9 1.0 710 720 730 740 750

710

720

730

740

750

0.7 0.8 0.9 1.0

accept_stat__

lp
__

(a) Acceptance

710

720

730

740

750

No divergence

lp
__

0 divergences

0.7

0.8

0.9

1.0

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.30: Acceptance and divergent transitions for model 4.4

710

720

730

740

750

0.006
(chain 4)

0.006
(chain 3)

0.008
(chain 2)

0.009
(chain 1)

lp
__

0.7

0.8

0.9

1.0

0.006
(chain 4)

0.006
(chain 3)

0.008
(chain 2)

0.009
(chain 1)

ac
ce

pt
_s

ta
t_

_

(a) Step size

710

720

730

740

750

6 7 8 9 10 11

treedepth__

lp
__

1

6 7 8 9 10 11

treedepth__

ac
ce

pt
_s

ta
t_

_

6 8 10

treedepth__

(b) Tree depth

Figure D.31: Step size and tree depth for model 4.4

XXXII

D. Model Diagnostics

3 4

1 2

−25 0 25 50 −25 0 25 50

E − E

πE

π∆E

(a) Energy

r_Project[evolution,Intercept]prior_b prior_phi prior_sd_Languageprior_sd_Project lp__

r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]

r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]r_Project[discourse,Intercept]r_Project[httpd,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]r_Project[junit5,Intercept]

r_Language[C,Intercept]r_Language[Python,Intercept]r_Language[JS,Intercept]r_Language[Ruby,Intercept]r_Language[C++,Intercept]r_Language[PHP,Intercept]r_Project[broadleafcommerce,Intercept]

b_Intercept b_Timecommit b_LOC sd_Language__Interceptsd_Project__Intercept phi r_Language[Java,Intercept]

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000
−1

0

1

−0.50
−0.25

0.00
0.25
0.50

0.0

0.5

−1.0

−0.5

0.0

0.5

−1.2
−0.8
−0.4

0.0
0.4

150
175
200
225
250

−1

0

1

−0.4
0.0
0.4
0.8

−1.0
−0.5

0.0
0.5
1.0

0

1

710
720
730
740
750

0.25

0.50

0.75

0
1
2
3

−0.5
0.0
0.5
1.0

−0.5

0.0

−1.0

−0.5

0.0

0.5

0
20000
40000
60000
80000

0
1
2
3
4

−1

0

1

2

−0.5
0.0
0.5
1.0

−1.0
−0.5

0.0
0.5

−1.0
−0.5

0.0
0.5

0
250
500
750

1000

−0.35
−0.30
−0.25
−0.20
−0.15
−0.10

0

1

2

−0.4

0.0

0.4

0.8

−0.5
0.0
0.5
1.0

−0.5
0.0
0.5
1.0

0
20
40
60

−0.04
0.00
0.04

−1.0
−0.5

0.0
0.5
1.0
1.5

−1.0
−0.5

0.0
0.5

−0.9
−0.6
−0.3

0.0
0.3

0

1

2

−2
−1

0
1
2

0

1

2

−1

0

1

2

−0.25
0.00
0.25
0.50
0.75

−1.00
−0.75
−0.50
−0.25

0.00

−0.25
0.00
0.25
0.50
0.75
1.00

−1.0

−0.5

0.0

0.5

Chain

1

2

3

4

(b) Trace plots

Figure D.32: Energy and trace plots for model 4.4

D.3 RQ4 Diagnostics

D.3.1 EXAM Model 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.33: Rhat and n_eff for Model C.5

XXXIII

D. Model Diagnostics

accept_stat__ lp__

0.90 0.95 1.00 1180 1190 1200 1210 1220 1230

1190

1200

1210

1220

0.875 0.900 0.925 0.950 0.975 1.000
accept_stat__

lp
__

(a) Acceptance

1190

1200

1210

1220

No divergence

lp
__

0 divergences

0.90

0.95

1.00

1.05

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.34: Acceptance and divergent transitions for model C.5

1190

1200

1210

1220

0.018
(chain 1)

0.024
(chain 2)

0.028
(chain 3)

0.033
(chain 4)

lp
__

0.90

0.95

1.00

1.05

0.018
(chain 1)

0.024
(chain 2)

0.028
(chain 3)

0.033
(chain 4)

ac
ce

pt
_s

ta
t_

_

(a) Step Size

1190

1200

1210

1220

5 6 7 8 9
treedepth__

lp
__

1

5 6 7 8 9
treedepth__

ac
ce

pt
_s

ta
t_

_

5 6 7 8 9
treedepth__

(b) Tree depth

Figure D.35: Step size and tree depth for model C.5

XXXIV

D. Model Diagnostics

3 4

1 2

−20 0 20 40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

prior_sd_Project lp__

r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]r_Project[evolution,Intercept] prior_b prior_phi

r_Project[discourse,Intercept]r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]

r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]

b_Intercept b_AlgorithmBugspots b_LOC sd_Project__Intercept phir_Project[broadleafcommerce,Intercept]

0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000
−0.6
−0.4
−0.2

0.0
0.2

−1.2
−0.9
−0.6
−0.3

0.00
0.25
0.50
0.75
1.00

−0.2
0.0
0.2
0.4
0.6

0

20

40

60

70

80

90

−1.25
−1.00
−0.75
−0.50

0.3

0.6

0.9

−0.50
−0.25

0.00
0.25

−2
−1

0
1
2

0.4
0.6
0.8

−0.25
0.00
0.25
0.50

−0.9
−0.6
−0.3

0.0

−1.6

−1.2

−0.8

−0.4

−0.50
−0.25

0.00
0.25

0.0

0.1

−0.25

0.00

0.25

0.25
0.50
0.75
1.00

−0.50

−0.25

0.00

−0.2
0.0
0.2
0.4
0.6

−0.10

−0.05

0.00

0.05

−0.4
−0.2

0.0
0.2
0.4
0.6

0.0
0.2
0.4
0.6
0.8

−0.4
−0.2

0.0
0.2
0.4

−1.25
−1.00
−0.75
−0.50
−0.25

1190
1200
1210
1220

−1.4
−1.2
−1.0
−0.8

−0.50
−0.25

0.00
0.25

−0.25
0.00
0.25
0.50

−0.6
−0.4
−0.2

0.0

0.0
0.2
0.4
0.6
0.8

0

500

1000

1500

Chain

1

2

3

4

(b) Trace plots

Figure D.36: Energy and trace plots for model C.5

D.3.2 EXAM Model 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1 1.5

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.37: Rhat and n_eff for model 4.5

XXXV

D. Model Diagnostics

accept_stat__ lp__

0.4 0.6 0.8 1.0 1180 1190 1200 1210 1220

1180

1190

1200

1210

0.4 0.6 0.8 1.0
accept_stat__

lp
__

(a) Acceptance

1180

1190

1200

1210

No divergence

lp
__

0 divergences

0.5

0.7

0.9

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.38: Acceptance and divergent transitions for model 4.5

1180

1190

1200

1210

0.006
(chain 4)

0.008
(chain 3)

0.009
(chain 2)

0.011
(chain 1)

lp
__

0.5

0.7

0.9

0.006
(chain 4)

0.008
(chain 3)

0.009
(chain 2)

0.011
(chain 1)

ac
ce

pt
_s

ta
t_

_

(a) Step Size

1180

1190

1200

1210

6 7 8 9 10 11
treedepth__

lp
__

0.5

1.0

6 7 8 9 10 11
treedepth__

ac
ce

pt
_s

ta
t_

_

6 8 10
treedepth__

(b) Tree depth

Figure D.39: Step size and tree depth for model 4.5

XXXVI

D. Model Diagnostics

3 4

1 2

−40 −20 0 20 40 −40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

r_Project[evolution,Intercept]prior_b prior_phi prior_sd_Languageprior_sd_Project lp__

r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]

r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]r_Project[discourse,Intercept]r_Project[httpd,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]r_Project[junit5,Intercept]

r_Language[C,Intercept]r_Language[Python,Intercept]r_Language[JS,Intercept]r_Language[Ruby,Intercept]r_Language[C++,Intercept]r_Language[PHP,Intercept]r_Project[broadleafcommerce,Intercept]

b_Interceptb_AlgorithmBugspots b_LOC sd_Language__Interceptsd_Project__Intercept phi r_Language[Java,Intercept]

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000
−1.5
−1.0
−0.5

0.0
0.5
1.0

−0.8

−0.4

0.0

0.4

−0.5

0.0

0.5

−0.5

0.0

0.5

1.0

−1.0
−0.5

0.0
0.5
1.0

60
70
80
90

−1

0

1

−1.5

−1.0

−0.5

0.0

−1.0
−0.5

0.0
0.5

−1.5
−1.0
−0.5

0.0
0.5
1.0

1180
1190
1200
1210

0.25

0.50

0.75

−2.0
−1.5
−1.0
−0.5

0.0
0.5

−1.5
−1.0
−0.5

0.0
0.5

−0.25
0.00
0.25
0.50
0.75
1.00

−0.5
0.0
0.5
1.0

0
100
200
300

0.0
0.5
1.0
1.5
2.0
2.5

−1.5
−1.0
−0.5

0.0
0.5
1.0

−1.0

−0.5

0.0

0.5

−0.5
0.0
0.5
1.0

−0.5
0.0
0.5
1.0

0

2000

4000

6000

−0.1

0.0

0.1

−2

−1

0

−0.75
−0.50
−0.25

0.00
0.25
0.50

−1.0
−0.5

0.0
0.5

−1.0
−0.5

0.0
0.5

0
20
40
60
80

−0.10

−0.05

0.00

0.05

−1.0
−0.5

0.0
0.5
1.0

−0.5

0.0

0.5

1.0

0.00
0.25
0.50
0.75
1.00

−1.5
−1.0
−0.5

0.0
0.5
1.0

−2
−1

0
1
2

−1.5
−1.0
−0.5

0.0

−1

0

−0.75
−0.50
−0.25

0.00
0.25
0.50

0.0

0.5

1.0

−1.00
−0.75
−0.50
−0.25

0.00
0.25

−0.5

0.0

0.5

1.0

Chain

1

2

3

4

(b) Trace plots

Figure D.40: Energy and trace plots for model 4.5

D.3.3 AUCECEXAM Model 1

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.41: Rhat and n_eff for model C.6

XXXVII

D. Model Diagnostics

accept_stat__ lp__

0.90 0.95 1.00 1190 1200 1210 1220 1230

1190

1200

1210

1220

1230

0.90 0.95 1.00
accept_stat__

lp
__

(a) Acceptance

1190

1200

1210

1220

1230

No divergence

lp
__

0 divergences

0.90

0.95

1.00

1.05

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.42: Acceptance and divergent transitions for model C.6

1190

1200

1210

1220

1230

0.011
(chain 4)

0.032
(chain 3)

0.034
(chain 2)

0.036
(chain 1)

lp
__

0.90

0.95

1.00

1.05

0.011
(chain 4)

0.032
(chain 3)

0.034
(chain 2)

0.036
(chain 1)

ac
ce

pt
_s

ta
t_

_

(a) Step Size

1190

1200

1210

1220

1230

4 5 6 7 8 9 10
treedepth__

lp
__

1

4 5 6 7 8 9 10
treedepth__

ac
ce

pt
_s

ta
t_

_

5 7 9
treedepth__

(b) Tree depth

Figure D.43: Step size and tree depth for model C.6

XXXVIII

D. Model Diagnostics

3 4

1 2

−20 0 20 −20 0 20

E − E

πE

π∆E

(a) Energy

prior_sd_Project lp__

r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]r_Project[evolution,Intercept]prior_b prior_phi

r_Project[discourse,Intercept]r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]

r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]

b_Intercept b_AlgorithmBugspots b_LOC sd_Project__Intercept phir_Project[broadleafcommerce,Intercept]

0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

−0.2
0.0
0.2
0.4
0.6

0.6

0.9

1.2

−1.00
−0.75
−0.50
−0.25

0.00

−0.6
−0.4
−0.2

0.0
0.2

0

20

40

60

70

80

90

0.25
0.50
0.75
1.00
1.25

−0.9

−0.6

−0.3

−0.2
0.0
0.2
0.4
0.6

−2
−1

0
1
2

0.4

0.6

0.8

−0.6
−0.4
−0.2

0.0
0.2
0.4

0.0
0.3
0.6
0.9

0.4
0.8
1.2
1.6

−0.4
−0.2

0.0
0.2
0.4

−0.1

0.0

0.1

−0.50
−0.25

0.00
0.25

−0.9

−0.6

−0.3

0.0

−0.25
0.00
0.25
0.50

−0.50
−0.25

0.00
0.25

−0.05

0.00

0.05

0.10

−0.50
−0.25

0.00
0.25

−0.75
−0.50
−0.25

0.00

−0.6
−0.4
−0.2

0.0
0.2

0.5

1.0

1190
1200
1210
1220
1230

0.75

1.00

1.25

1.50

−0.50
−0.25

0.00
0.25

−0.6
−0.4
−0.2

0.0
0.2
0.4

−0.25
0.00
0.25
0.50

−0.8
−0.6
−0.4
−0.2

0.0

0
5000

10000
15000
20000

Chain

1

2

3

4

(b) Trace plots

Figure D.44: Energy and trace plots for model C.6

D.3.4 AUCECEXAM Model 2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1 1.5

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.45: Rhat and n_eff for model 4.6

XXXIX

D. Model Diagnostics

accept_stat__ lp__

0.8 0.9 1.0 1180 1190 1200 1210 1220

1180

1190

1200

1210

0.8 0.9 1.0
accept_stat__

lp
__

(a) Acceptance

1180

1190

1200

1210

No divergence

lp
__

0 divergences

0.8

0.9

1.0

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.46: Acceptance and divergent transitions for model 4.6

1180

1190

1200

1210

0.006
(chain 2)

0.006
(chain 1)

0.008
(chain 3)

0.009
(chain 4)

lp
__

0.8

0.9

1.0

0.006
(chain 2)

0.006
(chain 1)

0.008
(chain 3)

0.009
(chain 4)

ac
ce

pt
_s

ta
t_

_

(a) Step Size

1180

1190

1200

1210

6 7 8 9 10 11
treedepth__

lp
__

1

6 7 8 9 10 11
treedepth__

ac
ce

pt
_s

ta
t_

_

6 8 10
treedepth__

(b) Tree depth

Figure D.47: Step size and tree depth for model 4.6

XL

D. Model Diagnostics

3 4

1 2

−20 0 20 40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

r_Project[evolution,Intercept]prior_b prior_phi prior_sd_Languageprior_sd_Project lp__

r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]

r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]r_Project[discourse,Intercept]r_Project[httpd,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]r_Project[junit5,Intercept]

r_Language[C,Intercept]r_Language[Python,Intercept]r_Language[JS,Intercept]r_Language[Ruby,Intercept]r_Language[C++,Intercept]r_Language[PHP,Intercept]r_Project[broadleafcommerce,Intercept]

b_Intercept b_AlgorithmBugspots b_LOC sd_Language__Interceptsd_Project__Intercept phi r_Language[Java,Intercept]

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

−0.5
0.0
0.5
1.0

0.0

0.5

−0.4

0.0

0.4

−0.5

0.0

−1.0
−0.5

0.0
0.5

60

70

80

90

−1.0
−0.5

0.0
0.5
1.0
1.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

−1.0
−0.5

0.0
0.5
1.0
1.5

1180
1190
1200
1210

0.25

0.50

0.75

0

1

2

−0.5
0.0
0.5
1.0
1.5

−1.2
−0.8
−0.4

0.0

−1.0
−0.5

0.0
0.5

0
250
500
750

1000
1250

0

1

2

−1

0

1

−0.5
0.0
0.5
1.0

−1.0
−0.5

0.0
0.5

−1.0

−0.5

0.0

0.5

0

2000

4000

6000

−0.1

0.0

0.1

−0.5
0.0
0.5
1.0
1.5
2.0

−0.4

0.0

0.4

−1.0
−0.5

0.0
0.5
1.0

−0.4
0.0
0.4
0.8
1.2

0
20
40
60
80

−0.05

0.00

0.05

0.10

−1.0
−0.5

0.0
0.5
1.0

−1.0

−0.5

0.0

0.5

−0.8

−0.4

0.0

−0.5
0.0
0.5
1.0
1.5

−2
−1

0
1
2

0.0
0.5
1.0
1.5
2.0

−0.5
0.0
0.5
1.0
1.5

−0.50
−0.25

0.00
0.25
0.50
0.75

−1.0

−0.5

0.0

0.0

0.5

1.0

−0.8
−0.4

0.0
0.4

Chain

1

2

3

4

(b) Trace plots

Figure D.48: Energy and trace plots for model 4.6

D.3.5 EXAM25

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1 1.5

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.49: Rhat and n_eff for model 4.7

XLI

D. Model Diagnostics

(a) Acceptance

2160

2170

2180

2190

2200

No divergence

lp
__

0 divergences

0.90

0.95

1.00

1.05

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.50: Acceptance and divergent transitions for model 4.7

2160

2170

2180

2190

2200

0.004
(chain 1)

0.004
(chain 4)

0.004
(chain 3)

0.005
(chain 2)

lp
__

0.90

0.95

1.00

1.05

0.004
(chain 1)

0.004
(chain 4)

0.004
(chain 3)

0.005
(chain 2)

ac
ce

pt
_s

ta
t_

_

(a) Step Size

2160

2170

2180

2190

2200

8 9 10 11 12
treedepth__

lp
__

1

8 9 10 11 12
treedepth__

ac
ce

pt
_s

ta
t_

_

8 9 10 11 12
treedepth__

(b) Tree depth

Figure D.51: Step size and tree depth for model 4.7

XLII

D. Model Diagnostics

3 4

1 2

−40 −20 0 20 40 −40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

r_Project[evolution,Intercept]prior_b prior_phi prior_sd_Languageprior_sd_Project lp__

r_Project[lucene−solr,Intercept]r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]

r_Project[rt.equinox.framework,Intercept]r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]r_Project[discourse,Intercept]r_Project[httpd,Intercept]

r_Project[ceylon−ide−eclipse,Intercept]r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]r_Project[junit5,Intercept]

r_Language[C,Intercept]r_Language[Python,Intercept]r_Language[JS,Intercept]r_Language[Ruby,Intercept]r_Language[C++,Intercept]r_Language[PHP,Intercept]r_Project[broadleafcommerce,Intercept]

b_Interceptb_AlgorithmBugspots b_LOC sd_Language__Interceptsd_Project__Intercept phi r_Language[Java,Intercept]

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000
−5
−4
−3
−2
−1

0

−2.0
−1.5
−1.0
−0.5

0.0

0.0
0.5
1.0
1.5
2.0

−1

0

1
2

−2
−1

0
1
2

70
80
90

100

−6

−4

−2

0

−3
−2
−1

0

−2
−1

0
1
2

−2
−1

0
1
2

2160
2170
2180
2190
2200

0.3
0.6
0.9
1.2

−6

−4

−2

0

−3
−2
−1

0
1
2

−1.0
−0.5

0.0
0.5
1.0
1.5

−2
−1

0
1
2

0
20000
40000
60000
80000

0

5

10

15

−6

−4

−2

0

−2
−1

0
1

−1
0
1
2

−2
−1

0
1
2

0
1000
2000
3000
4000
5000

−0.4

−0.2

0.0

0.2

−6
−4
−2

0

−1.0
−0.5

0.0
0.5
1.0

−3
−2
−1

0
1

−2
−1

0
1

0
20
40
60
80

0.3
0.4
0.5
0.6

−4

−2

0

−2

−1

0

1

−0.5
0.0
0.5
1.0
1.5

−2
−1

0
1
2

−2
−1

0
1
2

−3
−2
−1

0
1

−6

−4

−2

0

−1.0
−0.5

0.0
0.5
1.0

−0.5
0.0
0.5
1.0
1.5

−1.5
−1.0
−0.5

0.0

−1

0

1

2

Chain

1

2

3

4

(b) Trace plots

Figure D.52: Energy and trace plots for model 4.7

D.3.6 EInspect25EXAM

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.00 1.05

R̂

●

●

●

R̂ ≤ 1.05

R̂ ≤ 1.1

R̂ > 1.1

(a) Rhat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 0.1 0.25 0.5 0.75 1 1.5

Neff N

●

●

●

Neff N ≤ 0.1

Neff N ≤ 0.5

Neff N > 0.5

(b) n_eff

Figure D.53: Rhat and n_eff for model 4.8

XLIII

D. Model Diagnostics

(a) Acceptance

−340

−330

−320

−310

−300

No divergence

lp
__

0 divergences

0.8

0.9

1.0

No divergence

ac
ce

pt
_s

ta
t_

_

(b) Divergent Transitions

Figure D.54: Acceptance and divergent transitions for model 4.8

−340

−330

−320

−310

−300

0.016
(chain 1)

0.019
(chain 2)

0.022
(chain 4)

0.025
(chain 3)

lp
__

0.8

0.9

1.0

0.016
(chain 1)

0.019
(chain 2)

0.022
(chain 4)

0.025
(chain 3)

ac
ce

pt
_s

ta
t_

_

(a) Step Size

−340

−330

−320

−310

−300

6 7 8 9
treedepth__

lp
__

1

6 7 8 9
treedepth__

ac
ce

pt
_s

ta
t_

_

6 7 8 9
treedepth__

(b) Tree depth

Figure D.55: Step size and tree depth for model 4.8

XLIV

D. Model Diagnostics

3 4

1 2

−40 −20 0 20 40 −40 −20 0 20 40

E − E

πE

π∆E

(a) Energy

prior_b prior_sd_Languageprior_sd_Project lp__

r_Project[mysql−server,Intercept]r_Project[prestashop,Intercept]r_Project[rails,Intercept]r_Project[scikit−learn,Intercept]r_Project[server,Intercept]r_Project[woocommerce,Intercept]r_Project[evolution,Intercept]

r_Project[jfreechart,Intercept]r_Project[bootstrap,Intercept]r_Project[coala,Intercept]r_Project[commons−math,Intercept]r_Project[discourse,Intercept]r_Project[httpd,Intercept]r_Project[lucene−solr,Intercept]

r_Project[ffmpeg,Intercept]r_Project[closure−compiler,Intercept]r_Project[cpython,Intercept]r_Project[mongoose,Intercept]r_Project[mpc−hc,Intercept]r_Project[junit5,Intercept]r_Project[rt.equinox.framework,Intercept]

r_Language[Python,Intercept]r_Language[JS,Intercept]r_Language[Ruby,Intercept]r_Language[C++,Intercept]r_Language[PHP,Intercept]r_Project[broadleafcommerce,Intercept]r_Project[ceylon−ide−eclipse,Intercept]

b_Intercept b_AlgorithmBugspots b_LOC sd_Language__Interceptsd_Project__Interceptr_Language[Java,Intercept]r_Language[C,Intercept]

0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000

0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000 0200040006000
−7.5
−5.0
−2.5

0.0

−6
−3

0
3

−10

−5

0

5

−2
0
2
4
6

−15

−10

−5

0

−8
−6
−4
−2

0

−8
−4

0
4

−10

−5

0

−2
0
2
4

−7.5
−5.0
−2.5

0.0
2.5

1
2
3
4
5

−5.0
−2.5

0.0
2.5

−2
0
2
4

−4
−2

0
2
4

−6
−4
−2

0
2
4

0
3
6
9

12

−4
−2

0
2
4
6

−5.0
−2.5

0.0
2.5

−15
−10
−5

0

−6
−4
−2

0
2

−340
−330
−320
−310
−300

−1.5
−1.0
−0.5

0.0

−5.0
−2.5

0.0
2.5

−8

−4

0

−2
0
2
4
6

−5.0
−2.5

0.0
2.5

0
300
600
900

1200

−1.5

−1.0

−0.5

−5.0
−2.5

0.0
2.5

−2.5
0.0
2.5
5.0

−2.5
0.0
2.5
5.0

−5.0
−2.5

0.0
2.5
5.0

0
2500
5000
7500

10000
12500

−2
−1

0
1
2

−8
−6
−4
−2

0

−2.5

0.0

2.5

5.0

−8

−4

0

4

−2.5
0.0
2.5
5.0

−2
−1

0
1
2

Chain

1

2

3

4

(b) Trace plots

Figure D.56: Energy and trace plots for model 4.8

XLV

	List of Figures
	List of Tables
	Introduction
	Problem and Purpose
	Research Question 1: What kind of weighting function produces the best results for Linespots?
	Research Question 2: How does index-based age calculation influence the predictive performance of Linespots compared to time stamp based age calculation?
	Research Question 3: What is a good cut-off-point to turn Linespots into a classifier?
	Research Question 4: What is the prediction performance of Linespots compared to Bugspots?
	Research Question 5: Do Bugspots and Linespots predict faults in the same order?

	Background
	Fault Prediction
	Fault Localization
	Granularity
	Result Types
	Applicability

	Past Faults
	Identification of Faults

	Bugspots
	Weighting Functions
	Relative Commit Age

	Linespots
	Determining Faulty Elements
	Scoring Lines
	Implementation Changes
	Predictive Performance

	Relevance to Practice

	Methods
	Objectives
	Predictive Performance
	Optimal Cut-Off Point
	Ranking Comparison

	Experimental Design and Preparation
	Metrics
	Cost-Effectiveness
	Precision and Recall
	EXAM
	EXAMF
	Einspect@n
	Hit Density
	Average Rank Difference
	Comparing Granularities
	Influence of Sorting on Metrics

	Dataset
	Sources
	Sample Size
	Building the Dataset

	Validation Data
	Parameters
	Fix Indicator
	Weighting Function and Time Version
	Origin
	Depth
	Future

	Procedure
	Analysis
	Exploration and Simulation

	Projection Predictive Feature Selection
	Prior Sensitivity Analysis

	Model Design
	Model Diagnostics
	Model Comparison
	Model Interpretation

	Results
	Exploration
	Research Question 1
	EXAM Results
	AUCECEXAM Results

	Research Question 2
	EXAM Results
	AUCECEXAM Results

	Research Question 3
	Research Question 4
	EXAM Results
	AUCECEXAM Results
	RQ4: EXAM25 Results
	RQ4: EInspect25EXAM Results

	Research Question 5

	Discussion
	What kind of weighting function produces the best results for Linespots?
	How does index-based age calculation influence the predictive performance of Linespots compared to time stamp based age calculation?
	What is a good cut-off-point to turn Linespots into a classifier?
	What is the prediction performance of Linespots compared to Bugspots?
	Do Bugspots and Linespots predict faults in the same order?
	Other Observations
	Language and Domain Differences

	Threats to Validity and Limitations
	Faults in the Implementation
	Training on Evaluation Data
	Sourcing of Training and Validation Data
	Impact of Source and Choice
	GitHub as Data Source
	Bad Smells

	Future Work
	Standard Evaluation Suite
	Analyze Smaller Projects
	Linespots Performance
	Dataset Building

	Conclusion
	Bibliography
	Dataset
	Past Work
	Drawing Process

	Projpred Results
	Models
	Research Question 1
	EXAM
	AUCECEXAM

	Research Question 2
	EXAM
	AUCECEXAM

	Research Question 4
	AUCECEXAM

	Model Diagnostics
	RQ1 Diagnostics
	EXAM Model 1
	EXAM Model 2
	AUCECEXAM Model 1
	AUCECEXAM Model 2

	RQ2 Diagnostics
	EXAM Model 1
	EXAM Model 2
	AUCECEXAM Model 1
	AUCECEXAM Model 2

	RQ4 Diagnostics
	EXAM Model 1
	EXAM Model 2
	AUCECEXAM Model 1
	AUCECEXAM Model 2
	EXAM25
	EInspect25EXAM

